A Highly Multiplexed, Multiomic 3D Mouse Brain Map Using MALDI-IHC
使用 MALDI-IHC 绘制高度多重、多组学 3D 小鼠脑图
基本信息
- 批准号:10705203
- 负责人:
- 金额:$ 91.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccelerationAgarAntibodiesBRAIN initiativeBiological MarkersBrainBrain MappingBrain imagingCollaborationsComputer softwareData AnalysesData SetDevelopmentDiseaseFluorescenceFourier transform ion cyclotron resonanceFreezingGoalsHospitalsHourHumanImageImage AnalysisImaging DeviceImaging technologyImmunohistochemistryIndividualLabelLectinLengthLinkMapsMarketingMetalsMethodsModalityMolecularMusNeurodegenerative DisordersNeurosciencesPatternPhasePlayPolysaccharidesProceduresProductionProteinsProteomicsResolutionScanningSliceSpatial DistributionSpecimenSpectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationStainsTechniquesTechnologyTissue imagingTissuesUnited States National Institutes of HealthValidationVisualizationWomanbrain dysfunctionbrain tissuecommercializationdenoisingfluorescence imagingglycosylationinstrumentationmass spectrometric imagingmedical schoolsmetabolomicsmetermultimodalitymultiple omicsneuronal circuitrynovelpreservationprotein expressionreconstructionsmall moleculetool
项目摘要
Summary/Abstract
A central goal of the NIH Brain Initiative is to develop new imaging tools sufficiently powerful to spatially map at
high resolution the neuronal circuitry and underlying molecular composition of the brain. While cutting edge
imaging tools and related labeling techniques have been developed, it is still a major challenge to map the spatial
distribution at different length scales of the thousands of biomolecules, including expressed proteins, which play
key roles in brain function. The goal of this Phase II project is to evaluate the ability of a new tissue imaging
technology developed by AmberGen, termed MALDI-IHC, to rapidly create a highly multiplexed, multiomic and
multimodal 3D molecular map of the mouse brain. The development of MALDI-IHC for whole brain imaging will
provide neuroscientists with an important new tool for exploring the underlying molecular basis of brain function
and neurodegenerative disorders. MALDI-IHC is based on the use of novel photocleavable mass-tags (PC-MTs)
developed by AmberGen which when linked to antibody or lectin probes enable targeted biomolecules to be
identified in the mass spectrometric image. This approach significantly exceeds the multiplex capability of
fluorescence immunohistochemistry (IHC) and previous cleavable mass-tag based methods which are generally
limited to 5 biomarkers or require extensive cycling procedures. It also exceeds the capability of metal-tagged
antibody techniques such as IMC and MIBI which can probe small mm2 regions at subcellular resolution but are
limited to approximately 40 antibody probes and require several days to scan a whole tissue section. In contrast,
MALDI-IHC can image an entire mouse brain FFPE section for over 100 targeted proteins at 40 µm resolution in
less than one hour. The ability of MALDI-IHC to perform label-free, untargeted small molecule mass spectrometric
imaging (MSI), fluorescence imaging using unique dual-labeled fluorescent-PC-MT probes and high-plex imaging
of intact expressed proteins including glycosylation patterns on the same tissue section greatly extends the power
of this approach. During Phase I, we demonstrated the feasibility of this combined approach on mouse brain FF
and FFPE tissue specimens. During Phase II, we will develop methods using MALDI-IHC to reconstruct whole
mouse brain protein expression maps at 40 µm voxel resolution. FFPE sagittal and coronal mouse brain tissue slices
from mouse brain will be probed by MALDI-IHC using a panel of 50 NeuroMab PC-MT antibodies and 25 PC-MT
lectins. Validation of individual PC-MT probes will be performed by comparing MALDI-IHC and fluorescence IHC
images. A 3D tri-modal map of the mouse brain merging both metabolites and expressed proteins will also be
reconstructed based on a demonstrated workflow that involves MSI of unlabeled small molecules from successive
FF specimens, IHC staining with a 75-plex panel of PC-MT probes including some dual-labeled PC-MT antibodies,
and fluorescence imaging followed by MSI of the PC-MTs. Reconstruction of 3D maps, visualization and image
analysis will be performed using Bruker SCiLS™ software. Commercialization of MALDI-IHC technology will be
accelerated by a close collaboration with Bruker Daltonics, the market leader of MALDI-MSI instrumentation.
总结/摘要
NIH脑计划的一个中心目标是开发新的成像工具,这些工具足够强大,可以在空间上映射
高分辨率的神经元回路和大脑的基本分子组成。当尖端
尽管已经开发了成像工具和相关的标记技术,但绘制空间分布图仍然是一个重大挑战。
分布在不同长度尺度的数千个生物分子,包括表达的蛋白质,发挥作用,
在大脑功能中的关键作用。这个第二阶段项目的目标是评估一种新的组织成像的能力,
AmberGen开发的称为MALDI-IHC的技术,用于快速创建高度多重化、多组学和
小鼠大脑的多模式3D分子图。全脑成像MALDI-IHC的发展将
为神经科学家探索大脑功能的潜在分子基础提供了重要的新工具
和神经变性疾病。MALDI-IHC基于使用新型光裂解质量标签(PC-MT)
由AmberGen开发,当与抗体或凝集素探针连接时,
在质谱图像中识别。这种方法大大超过了多路复用能力,
荧光免疫组织化学(IHC)和先前的基于可裂解质量标签的方法,其通常
仅限于5种生物标志物或需要大量的循环程序。它也超过了金属标记的能力
抗体技术,如IMC和MIBI,可以以亚细胞分辨率探测小的mm 2区域,但
仅限于大约40个抗体探针并且需要几天来扫描整个组织切片。与此相反,
MALDI-IHC可以以40 µm的分辨率对整个小鼠脑FFPE切片中的100多种靶蛋白进行成像,
不到一个小时。MALDI-IHC进行无标记、非靶向小分子质谱分析的能力
MSI成像、使用独特的双标记荧光-PC-MT探针的荧光成像和高重成像
包括糖基化模式在内的完整表达蛋白质在同一组织切片上的表达大大扩展了
这种方法。在第一阶段,我们证明了这种联合方法在小鼠脑FF上的可行性。
和FFPE组织标本。在第二阶段,我们将开发使用MALDI-IHC重建整个
40 µm体素分辨率的小鼠脑蛋白表达图。FFPE矢状面和冠状面小鼠脑组织切片
将使用一组50个NeuroMab PC-MT抗体和25个PC-MT抗体通过MALDI-IHC探测来自小鼠脑的
凝集素。将通过比较MALDI-IHC和荧光IHC对单个PC-MT探针进行验证
图像.还将绘制小鼠大脑的3D三模态图,其合并了代谢物和表达的蛋白质。
基于所展示的工作流程进行重建,该工作流程涉及来自连续的未标记的小分子的MSI。
FF标本,使用75重PC-MT探针组(包括一些双标记的PC-MT抗体)进行IHC染色,
和荧光成像,随后进行PC-MT的MSI。3D标测图、可视化和图像重建
将使用Bruker SCiLS™软件进行分析。MALDI-IHC技术的商业化将是
通过与MALDI-MSI仪器的市场领导者Bruker Daltonics的密切合作,加速了这一进程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Lim其他文献
Mark Lim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Lim', 18)}}的其他基金
New Technology for High-Resolution Antibody Profiling for SARS-CoV-2
SARS-CoV-2 高分辨率抗体分析新技术
- 批准号:
10481680 - 财政年份:2022
- 资助金额:
$ 91.04万 - 项目类别:
A Highly Multiplexed, Multiomic 3D Mouse Brain Map Using MALDI-IHC
使用 MALDI-IHC 绘制高度多重、多组学 3D 小鼠脑图
- 批准号:
10603396 - 财政年份:2022
- 资助金额:
$ 91.04万 - 项目类别:
Photocleavable Mass-Tags for Spatial Multiomics of Alzheimer’s Brain Tissue
用于阿尔茨海默病脑组织空间多组学的光裂解质量标签
- 批准号:
10684250 - 财政年份:2022
- 资助金额:
$ 91.04万 - 项目类别:
Photocleavable Mass-Tags for Spatial Multiomics of Alzheimer’s Brain Tissue
用于阿尔茨海默病脑组织空间多组学的光裂解质量标签
- 批准号:
10483988 - 财政年份:2022
- 资助金额:
$ 91.04万 - 项目类别:
New Technology for High-Resolution Antibody Profiling for SARS-CoV-2
SARS-CoV-2 高分辨率抗体分析新技术
- 批准号:
10686794 - 财政年份:2022
- 资助金额:
$ 91.04万 - 项目类别:
Photocleavage Technology for Blood-based Multi-Biomarker Alzheimer's Disease Assay
用于基于血液的多生物标志物阿尔茨海默病检测的光裂解技术
- 批准号:
10227129 - 财政年份:2020
- 资助金额:
$ 91.04万 - 项目类别:
Highly Multiplexed Nanoscale Mass Spectrometric Imaging of Cancer Tissues
癌症组织的高度多重纳米级质谱成像
- 批准号:
9908822 - 财政年份:2018
- 资助金额:
$ 91.04万 - 项目类别:
Highly Multiplexed Nanoscale Mass Spectrometric Imaging of Cancer Tissues
癌症组织的高度多重纳米级质谱成像
- 批准号:
10019483 - 财政年份:2018
- 资助金额:
$ 91.04万 - 项目类别:
Photocleavage Technology for Improved Serum-based Multi-Biomarker Cancer Assays
用于改进基于血清的多生物标志物癌症检测的光裂解技术
- 批准号:
9175644 - 财政年份:2016
- 资助金额:
$ 91.04万 - 项目类别:
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 91.04万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 91.04万 - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 91.04万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 91.04万 - 项目类别:
Continuing Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 91.04万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 91.04万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 91.04万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 91.04万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 91.04万 - 项目类别:
Standard Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 91.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




