Application of Machine Learning Algorithms to Thiopurine Monitoring in IBD
机器学习算法在 IBD 硫嘌呤监测中的应用
基本信息
- 批准号:8238209
- 负责人:
- 金额:$ 36.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2017-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdvertisementsAlgorithmsArchitectureBioinformaticsBiological AssayBiological MarkersBloodBlood Chemical AnalysisBooksBusinessesCaringChemistryClinicClinicalClinical DataClinical InformaticsClinical Laboratory Information SystemsCollaborationsComputersDataData AnalysesData SetDatabasesDiagnosticDoseEffectivenessFraudGoalsGoldHealthcareHealthcare SystemsImmune systemImmunocompromised HostImmunologic MonitoringImmunosuppressionInflammationInflammatory Bowel DiseasesInformaticsInternetIntestinesInvestmentsLaboratoriesLeadLifeMachine LearningMedicalMedical ElectronicsMedicineMethodsMichiganMonitorNational Cancer InstitutePathologyPatient CarePatientsPatternPharmaceutical PreparationsPublishingRecommendationSecureSerumTechniquesTechnologyTestingTherapeutic IndexTherapeutic immunosuppressionUnited StatesUnited States National Institutes of HealthUniversitiesbaseclinical careclinical practicecluster computingcostdata exchangedigitaldosageimprovedinnovationnovelprognosticresponsesuccessthiopurine
项目摘要
DESCRIPTION (provided by applicant): During routine medical care, enormous amounts of data are collected in the form of blood counts, blood chemistries, and other biomarkers. Despite this huge investment, remarkably little effort is applied to the interpretation of this data. Outside of medicine, a revolution in the analysis of large datasets has been driven by machine learning techniques in diverse applications ranging from identifying credit card fraud to making recommendations for book purchases. Despite the prominence of bioinformatics in the NIH Roadmap Initiative, these remarkable advances have had little impact on medical care. The broad, long-term objective of this proposal is to optimize, implement, test, and nationally distribute machine learning algorithms which will utilize patterns in large datasets to improve diagnostic and prognostic accuracy in medicine. We propose to use the monitoring of immune suppression during thiopurine therapy for inflammatory bowel disease as a demonstration case. A low therapeutic index makes it important to optimize thiopurine dosage for inflammatory bowel disease, and assays for serum metabolites are of limited benefit. Our preliminary data show that machine learning algorithms can be used to substantially improve prognostic accuracy and reduce costs in monitoring thiopurine use. The central hypothesis of this proposal is that there are patterns in the blood counts and blood chemistries associated with effective immune suppression by thiopurine medications which can be used to guide medication dosing. The rationale for this hypothesis is based on two observations. First, our preliminary data demonstrates that machine learning can identify significant changes in immune system activation through analysis of laboratory data. Second, published data suggests that the less accurate thiopurine metabolite tests are reasonably effective in guiding dose adjustment of thiopurines. This application proposes the optimization, implementation and testing of a improved set of thiopurine monitoring algorithms, and the nationwide delivery of the optimized algorithms through the National Cancer Institute-supported LIDDEx (Laboratory Information Digital Data Exchange) architecture. The specific aims of this proposal are to: (1) use longitudinal clinical data and novel mathematical methods to improve the existing algorithm for clinical response to thiopurine therapy, using objective evidence of bowel inflammation as the gold standard; (2) prospectively test whether the thiopurine monitoring algorithms can accurately classify IBD patients who are immunosuppressed and patients who are non-adherent to thiopurine medications, and whether these algorithms can prospectively guide dosing of thiopurines in patients; and (3) implement these revised algorithms on a web server using the LIDDEx grid architecture to enable nationwide clinical use, and field test this implementation in the Ann Arbor VA IBD clinic. The proposed studies will directly impact patient care throughout the United States, and by demonstrating the effectiveness of this informatics architecture, spur further innovation and application of bioinformatics to clinical care.
PUBLIC HEALTH RELEVANCE: This project addresses the NIH Roadmap Initiative goal of the application of innovations in bioinformatics to bedside clinical practice. The proposed studies will directly impact the care of patients with inflammatory bowel disease (IBD) throughout the United States. We expect that the successful demonstration of the effectiveness of the LIDDEx clinical informatics architecture will have a broad impact on clinical care beyond IBD by spurring further innovation and application of bioinformatics to clinical care in a range of medical fields.
描述(由申请人提供):在常规医疗护理期间,以血细胞计数、血液化学和其他生物标志物的形式收集大量数据。尽管有如此巨大的投资,但对这些数据的解释却很少。在医学之外,机器学习技术在各种应用中推动了大型数据集分析的革命,从识别信用卡欺诈到提出图书购买建议。尽管生物信息学在NIH路线图计划中占据重要地位,但这些显着的进步对医疗保健的影响甚微。该提案的广泛、长期目标是优化、实施、测试和在全国范围内分发机器学习算法,这些算法将利用大型数据集中的模式来提高医学诊断和预后的准确性。 我们建议使用硫嘌呤治疗炎症性肠病期间的免疫抑制监测作为示范案例。低治疗指数使得优化炎症性肠病的巯基嘌呤剂量变得重要,并且血清代谢物的测定益处有限。我们的初步数据表明,机器学习算法可用于大幅提高预后准确性,并降低监测硫嘌呤使用的成本。该建议的中心假设是,血细胞计数和血液化学中存在与巯基嘌呤药物有效免疫抑制相关的模式,可用于指导药物给药。这一假设的基本原理基于两个观察结果。首先,我们的初步数据表明,机器学习可以通过分析实验室数据来识别免疫系统激活的显著变化。其次,已发表的数据表明,不太准确的硫嘌呤代谢物检测在指导硫嘌呤剂量调整方面相当有效。 该申请提出了一套改进的巯基嘌呤监测算法的优化,实施和测试,并通过国家癌症研究所支持的LIDDEx(实验室信息数字数据交换)架构在全国范围内提供优化算法。该提案的具体目的是:(1)使用纵向临床数据和新的数学方法,以肠道炎症的客观证据为金标准,改进现有的巯基嘌呤治疗临床反应算法;(2)前瞻性地测试硫嘌呤监测算法是否可以准确地将免疫抑制的IBD患者和不依从硫嘌呤药物的患者分类,以及这些算法是否可以前瞻性地指导患者中硫嘌呤的给药;以及(3)使用LIDDEx网格架构在web服务器上实现这些修改的算法以使得能够在全国范围内临床使用,并且在安阿伯VA IBD诊所中现场测试该实现。拟议的研究将直接影响整个美国的患者护理,并通过展示这种信息学架构的有效性,刺激生物信息学在临床护理中的进一步创新和应用。
公共卫生关系:该项目致力于将生物信息学创新应用于临床实践的NIH路线图倡议目标。拟议的研究将直接影响美国各地炎症性肠病(IBD)患者的护理。我们预计,LIDDEx临床信息学架构的有效性的成功证明将通过刺激生物信息学在一系列医学领域的进一步创新和应用,对IBD以外的临床护理产生广泛的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter D.R. Higgins其他文献
The Microbiome in Quiescent Crohn’s Disease With Persistent Symptoms Show Disruptions in Microbial Sulfur and Tryptophan Pathways
- DOI:
10.1016/j.gastha.2023.11.005 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:
- 作者:
Jonathan Golob;Krishna Rao;Jeffrey A. Berinstein;William D. Chey;Chung Owyang;Nobuhiko Kamada;Peter D.R. Higgins;Vincent Young;Shrinivas Bishu;Allen A. Lee - 通讯作者:
Allen A. Lee
Letter: TNFα blockers and psoriasis: a ‘reasonable paradox’ – the role of TH‐17 cells
信件:TNFα 阻滞剂和牛皮癣:一个“合理的悖论”——TH-17 细胞的作用
- DOI:
10.1111/apt.12705 - 发表时间:
2014 - 期刊:
- 影响因子:7.6
- 作者:
R. Stidham;T. C. H. Lee;Peter D.R. Higgins;A. Deshpande;Daniel A. Sussman;Amit G. Singal;B. J. Elmunzer;S. Saini;Sandeep Vijan;A. Waljee - 通讯作者:
A. Waljee
Acute Severe Ulcerative Colitis: An International Delphi Consensus on Clinical Trial Design and Endpoints
急性重度溃疡性结肠炎:临床试验设计和终点的国际德尔菲共识
- DOI:
10.1016/j.cgh.2024.10.029 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:12.000
- 作者:
Sailish Honap;Vipul Jairath;Bruce E. Sands;Parambir S. Dulai;Peter D.R. Higgins;Peter De Cruz;Ana Gutiérrez;Paulo G. Kotze;Byong Duk Ye;Taku Kobayashi;Richard B. Gearry;Pablo A. Olivera;Aurélien Amiot;Mahmoud H. Mosli;Sameer Al Awadhi;Jonas Halfvarson;Kamal V. Patel;Shaji Sebastian;Silvio Danese;Laurent Peyrin-Biroulet - 通讯作者:
Laurent Peyrin-Biroulet
P023 CROHN’S DISEASE AND ULCERATIVE COLITIS PATIENT PERSPECTIVES ON PARTICIPATION IN IBD CLINICAL TRIALS
- DOI:
10.1053/j.gastro.2017.11.058 - 发表时间:
2018-01-01 - 期刊:
- 影响因子:
- 作者:
Orna Ehrlich;James Testaverde;Caren Heller;Stuart Daman;Annick Anderson;Peter D.R. Higgins - 通讯作者:
Peter D.R. Higgins
Peter D.R. Higgins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter D.R. Higgins', 18)}}的其他基金
Assessing biomarkers of intestinal fibrosis and inflammation in Crohn's Disease via an endoscopic imaging catheter
通过内窥镜成像导管评估克罗恩病肠道纤维化和炎症的生物标志物
- 批准号:
10321724 - 财政年份:2020
- 资助金额:
$ 36.01万 - 项目类别:
Assessing biomarkers of intestinal fibrosis and inflammation in Crohn's Disease via an endoscopic imaging catheter
通过内窥镜成像导管评估克罗恩病肠道纤维化和炎症的生物标志物
- 批准号:
10689650 - 财政年份:2020
- 资助金额:
$ 36.01万 - 项目类别:
Assessing biomarkers of intestinal fibrosis and inflammation in Crohn's Disease via an endoscopic imaging catheter
通过内窥镜成像导管评估克罗恩病肠道纤维化和炎症的生物标志物
- 批准号:
10033948 - 财政年份:2020
- 资助金额:
$ 36.01万 - 项目类别:
Assessing biomarkers of intestinal fibrosis and inflammation in Crohn's Disease via an endoscopic imaging catheter
通过内窥镜成像导管评估克罗恩病肠道纤维化和炎症的生物标志物
- 批准号:
10227767 - 财政年份:2020
- 资助金额:
$ 36.01万 - 项目类别:
Inhibiting Bcl-2-regulated intestinal fibrosis in models of Crohn’s Disease
抑制克罗恩病模型中 Bcl-2 调节的肠道纤维化
- 批准号:
10171576 - 财政年份:2018
- 资助金额:
$ 36.01万 - 项目类别:
Inhibiting Bcl-2-regulated intestinal fibrosis in models of Crohn’s Disease
抑制克罗恩病模型中 Bcl-2 调节的肠道纤维化
- 批准号:
10417063 - 财政年份:2018
- 资助金额:
$ 36.01万 - 项目类别:
In vivo photoacoustic biopsy for intestinal strictures in Crohn's disease
体内光声活检治疗克罗恩病肠道狭窄
- 批准号:
9304857 - 财政年份:2016
- 资助金额:
$ 36.01万 - 项目类别:
Application of Machine Learning Algorithms to Thiopurine Monitoring in IBD
机器学习算法在 IBD 硫嘌呤监测中的应用
- 批准号:
8516056 - 财政年份:2012
- 资助金额:
$ 36.01万 - 项目类别:
Application of Machine Learning Algorithms to Thiopurine Monitoring in IBD
机器学习算法在 IBD 硫嘌呤监测中的应用
- 批准号:
9059748 - 财政年份:2012
- 资助金额:
$ 36.01万 - 项目类别:
Application of Machine Learning Algorithms to Thiopurine Monitoring in IBD
机器学习算法在 IBD 硫嘌呤监测中的应用
- 批准号:
8657058 - 财政年份:2012
- 资助金额:
$ 36.01万 - 项目类别:
相似海外基金
Content analysis of advertisements and news of skin-lightening products targeting black women and community outreach program
针对黑人女性的美白产品广告和新闻的内容分析和社区外展计划
- 批准号:
10746258 - 财政年份:2023
- 资助金额:
$ 36.01万 - 项目类别:
Collaborative Research: Understanding the Evolution of Political Campaign Advertisements over the Last Century
合作研究:了解上个世纪政治竞选广告的演变
- 批准号:
2148202 - 财政年份:2022
- 资助金额:
$ 36.01万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Evolution of Political Campaign Advertisements over the Last Century
合作研究:了解上个世纪政治竞选广告的演变
- 批准号:
2147635 - 财政年份:2022
- 资助金额:
$ 36.01万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Evolution of Political Campaign Advertisements over the Last Century
合作研究:了解上个世纪政治竞选广告的演变
- 批准号:
2148928 - 财政年份:2022
- 资助金额:
$ 36.01万 - 项目类别:
Standard Grant
Examining the Mechanisms Underlying the Influence of Facebook Food Advertisements on Adolescents' Eating Behaviors: Randomized Controlled Trials
检查 Facebook 食品广告对青少年饮食行为影响的机制:随机对照试验
- 批准号:
10188966 - 财政年份:2021
- 资助金额:
$ 36.01万 - 项目类别:
Examining the Mechanisms Underlying the Influence of Facebook Food Advertisements on Adolescents' Eating Behaviors: Randomized Controlled Trials
检查 Facebook 食品广告对青少年饮食行为影响的机制:随机对照试验
- 批准号:
10434838 - 财政年份:2021
- 资助金额:
$ 36.01万 - 项目类别:
Examining the Mechanisms Underlying the Influence of Facebook Food Advertisements on Adolescents' Eating Behaviors: Randomized Controlled Trials
检查 Facebook 食品广告对青少年饮食行为影响的机制:随机对照试验
- 批准号:
10653828 - 财政年份:2021
- 资助金额:
$ 36.01万 - 项目类别:
Advancing machine learning applications for decoding gendered language in job advertisements.
推进机器学习应用程序以解码招聘广告中的性别语言。
- 批准号:
540068-2019 - 财政年份:2019
- 资助金额:
$ 36.01万 - 项目类别:
University Undergraduate Student Research Awards
Consumer Information Processing from Advertisements: Avoidance, Memory, and Attitudes
广告中的消费者信息处理:回避、记忆和态度
- 批准号:
19K13833 - 财政年份:2019
- 资助金额:
$ 36.01万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
POSITIONING OF HEALTH CARE SERVICE: EXAMINATION OF THE ADVERTISEMENTS AND STAKEHOLDER PERCEPTIONS
医疗保健服务的定位:广告检查和利益相关者的看法
- 批准号:
1759113 - 财政年份:2018
- 资助金额:
$ 36.01万 - 项目类别:
Standard Grant














{{item.name}}会员




