Membrane protein folding and assembly

膜蛋白折叠和组装

基本信息

  • 批准号:
    8197738
  • 负责人:
  • 金额:
    $ 35.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-03-01 至 2014-11-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): An accurate first-principles algorithm for predicting the 3D structure of 1-helical membrane proteins (MPs) from amino acid sequence would profoundly affect the course of biological research on MP function. The research proposed here is designed to bring us closer to that goal. The project is guided by our belief that the keys to successful prediction are to understand the physical principles of MP stability in lipid bilayers and the biological principles of MP assembly, especially the principles of transmembrane (TM) helix selection by the translocon complex (Sec61123 in eukaryotes and SecYEG in bacteria). The "Big Picture" goal of this project is to tighten the connection between the physical and biological principles as represented by hydrophobicity scales for predicting TM helices. We have discovered through molecular dynamics simulations of the SecYEG translocon from Methanococcus jannaschii, whose 3D structure is known, that the translocon is stabilized in its closed state by an intricate hydrogen-bond network that must be restructured during translocon opening initiated by signal sequences. Furthermore, we have found that this network is strongly perturbed by the well known prlA mutations of Escherichia coli that cause defects in protein secretion and helix insertion. Understanding the molecular basis for prlA-mutation defects will provide insights into the mechanism of translocon-mediated MP assembly. We thus propose to examine the effect of prlA mutations on the code used by E. coli translocons in vivo to select transmembrane helices during MP assembly. To connect prlA mutations to the selection code, we will develop in vivo TM-helix hydrophobicity scales for E. coli using single-span MPs to take advantage of the possibility of inserting TM helices along two different pathways: the SecA post-translational pathway or the co-translational signal recognition particle (SRP) pathway. This approach will clarify the relation between physical and biological principles. Our first steps in the development of a single-span MP system yielded unexpected and puzzling results. Even though single- span MPs are the most abundant MPs in all organisms, they have never been subjected to systematic study in E. coli. Preliminary results suggest the existence of previously unrecognized MP targeting signals that may involve the FtsH MP quality-control protease. These considerations lead to four specific aims: (1) Establish in vivo biological hydrophobicity scales for the insertion of single-span MPs along the SecA and SRP pathways. (2) Guided by molecular dynamics simulations, use the resulting scales of Aim 1 to examine the effects of prl mutants on SecYEG selection of TM helices. (3) To enhance genome-wide analyses of MPs, carry out a detailed bioinformatics analysis of E. coli single-span MPs in combination with systematic experimental studies to characterize and classify single-span MPs. (4) Characterize new targeting signals and a potential single- span MP insertion pathway that may involve the FtsH MP quality-control protease. PUBLIC HEALTH RELEVANCE: An accurate first-principles algorithm for predicting the three-dimensional structure of membrane proteins from amino acid sequence would profoundly affect research on membrane proteins, which are major targets for therapeutic drugs. The project is guided by the idea that the keys to successful prediction are to understand the physical principles of membrane protein stability and the biological principles of membrane protein assembly. Our goal is to tighten the connection between the physical and biological principles as a basis for prediction algorithms.
描述(由申请人提供):一种用于预测氨基酸序列1螺旋膜蛋白(MP)3D结构的准确第一原理算法将对MP功能的生物学研究进一步影响。这里提出的研究旨在使我们更接近该目标。该项目的指导是我们相信成功预测的关键是要了解脂质双层中MP稳定性的物理原理和MP组装的生物学原理,尤其是Translocon Complect的跨膜(TM)螺旋构成原理(真核生物中的SEC61123和细菌中的Secyeg)。该项目的“全局”目标是收紧以疏水性量表来预测TM螺旋的物理原理和生物学原理之间的联系。我们通过jannaschii的甲虫球菌对Secyeg易位的分子动力学模拟进行了发现,该甲壳虫的3D结构已知,易位能够通过复杂的氢键网络以其封闭状态稳定,该网络必须在信号序列引发的转运过程中进行重组。此外,我们发现该网络受到众所周知的大肠杆菌的PRLA突变的强烈扰动,这些突变引起蛋白质分泌和螺旋插入的缺陷。了解PRLA突变缺陷的分子基础将提供有关转运介导的MP组装机理的见解。因此,我们建议检查PRLA突变对MP组装过程中在体内选择跨膜螺旋的代码的影响。为了将PRLA突变与选择代码联系起来,我们将使用单SPAN MPS为大肠杆菌开发体内TM螺旋疏水性尺度,以利用沿两个不同途径插入TM螺旋的可能性:SECA后传输后途径或共同传播信号识别粒子(SRP)途径。这种方法将阐明物理和生物学原理之间的关系。我们开发单跨MP系统的第一步产生了意想不到的令人困惑的结果。即使单个SPAN MP是所有生物中最丰富的MP,但它们从未在大肠杆菌中进行系统研究。初步结果表明,存在可能涉及FTSH MP质量控制蛋白酶的先前未识别的MP靶向信号。这些考虑因素导致了四个特定的目标:(1)在体内生物疏水性尺度上建立沿SECA和SRP途径插入单跨度MP的尺度。 (2)在分子动力学模拟的指导下,使用AIM 1的所得量表检查PRL突变体对TM螺旋的Secyeg选择的影响。 (3)为增强对MP的全基因组分析,对大肠杆菌单跨MPS进行了详细的生物信息学分析,并结合系统的实验研究,以表征和分类单跨度MPS。 (4)表征新的靶向信号和可能涉及FTSH MP质量控制蛋白酶的潜在单跨MP插入途径。 公共卫生相关性:一种准确的第一原理算法,用于预测氨基酸序列的膜蛋白的三维结构,将深刻影响对膜蛋白的研究,膜蛋白是治疗药物的主要靶标。该项目的指导是成功预测的关键是了解膜蛋白稳定性的物理原理和膜蛋白质组装的生物学原理。我们的目标是收紧物理和生物学原理之间的联系,作为预测算法的基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

STEPHEN H. WHITE其他文献

STEPHEN H. WHITE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('STEPHEN H. WHITE', 18)}}的其他基金

Membrane Protein Folding and Assembly
膜蛋白折叠和组装
  • 批准号:
    10612983
  • 财政年份:
    2021
  • 资助金额:
    $ 35.37万
  • 项目类别:
Membrane Protein Folding and Assembly
膜蛋白折叠和组装
  • 批准号:
    10411888
  • 财政年份:
    2021
  • 资助金额:
    $ 35.37万
  • 项目类别:
Making Sense of Voltage Sensors
理解电压传感器
  • 批准号:
    8025961
  • 财政年份:
    2009
  • 资助金额:
    $ 35.37万
  • 项目类别:
Making Sense of Voltage Sensors
理解电压传感器
  • 批准号:
    7766185
  • 财政年份:
    2009
  • 资助金额:
    $ 35.37万
  • 项目类别:
Making Sense of Voltage Sensors
理解电压传感器
  • 批准号:
    8214529
  • 财政年份:
    2009
  • 资助金额:
    $ 35.37万
  • 项目类别:
Proj 2:Neutron Diffraction Studies of Voltage Sensor Molecules in Lipid Bilayers
项目 2:脂质双层中电压传感器分子的中子衍射研究
  • 批准号:
    7625288
  • 财政年份:
    2009
  • 资助金额:
    $ 35.37万
  • 项目类别:
Making Sense of Voltage Sensors
理解电压传感器
  • 批准号:
    8435413
  • 财政年份:
    2009
  • 资助金额:
    $ 35.37万
  • 项目类别:
Making Sense of Voltage Sensors
理解电压传感器
  • 批准号:
    7569070
  • 财政年份:
    2009
  • 资助金额:
    $ 35.37万
  • 项目类别:
Membrane protein folding and assembly
膜蛋白折叠和组装
  • 批准号:
    8392280
  • 财政年份:
    2006
  • 资助金额:
    $ 35.37万
  • 项目类别:
Membrane Protein Folding and Assembly
膜蛋白折叠和组装
  • 批准号:
    7586269
  • 财政年份:
    2006
  • 资助金额:
    $ 35.37万
  • 项目类别:

相似国自然基金

基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
  • 批准号:
    52378011
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
社交网络上观点动力学的重要影响因素与高效算法
  • 批准号:
    62372112
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
  • 批准号:
    72372021
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
  • 批准号:
    72372070
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
算法鸿沟影响因素与作用机制研究
  • 批准号:
    72304017
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The role of stress, social support, and brain function on alcohol misuse in women
压力、社会支持和大脑功能对女性酗酒的影响
  • 批准号:
    10676428
  • 财政年份:
    2023
  • 资助金额:
    $ 35.37万
  • 项目类别:
Fair risk profiles and predictive models for outcomes of obstructive sleep apnea through electronic medical record data
通过电子病历数据对阻塞性睡眠呼吸暂停结果进行公平的风险概况和预测模型
  • 批准号:
    10678108
  • 财政年份:
    2023
  • 资助金额:
    $ 35.37万
  • 项目类别:
Exploiting translation elongation for improved biologics manufacturing
利用平移伸长来改进生物制品的制造
  • 批准号:
    10760927
  • 财政年份:
    2023
  • 资助金额:
    $ 35.37万
  • 项目类别:
Identifying patient subgroups and processes of care that cause outcome differences following ICU vs. ward triage among patients with acute respiratory failure and sepsis
确定急性呼吸衰竭和脓毒症患者在 ICU 与病房分诊后导致结局差异的患者亚组和护理流程
  • 批准号:
    10734357
  • 财政年份:
    2023
  • 资助金额:
    $ 35.37万
  • 项目类别:
An Integrated Biomarker Approach to Personalized, Adaptive Deep Brain Stimulation in Parkinson Disease
帕金森病个性化、适应性深部脑刺激的综合生物标志物方法
  • 批准号:
    10571952
  • 财政年份:
    2023
  • 资助金额:
    $ 35.37万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了