Membrane Protein Folding and Assembly
膜蛋白折叠和组装
基本信息
- 批准号:10411888
- 负责人:
- 金额:$ 39.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:ATP phosphohydrolaseBiologicalBiological ModelsCellsChimeric ProteinsCryoelectron MicroscopyCystic FibrosisCytoplasmCytoplasmic TailDiseaseDrug TargetingElectronsEngineeringEscherichia coliFoundationsGoalsGrowthHydrophobicityLipidsMembraneMembrane ProteinsMethodsMotorPaperPathway interactionsPeptide HydrolasesProcessProtein FamilyProteinsSignal Recognition ParticleStructureSystemTemperatureWorkexperimental studyhuman diseasein vivoin vivo Modelinsightmolecular dynamicsnanodiskperiplasmprotein foldingprotein misfoldingsecretion process
项目摘要
Save date: 15 Jan 2020, 22:40
ABSTRACT
Membrane Protein Folding and Assembly
Many human diseases, such as cystic fibrosis, result from misfolding of membrane proteins
(MPs) during their synthesis and targeting. It is therefore important to understand the principles
and mechanism of MP folding and assembly. A largely unexplored part of the problem is to
understand folding in the context of the cellular milieu. Toward that goal, we are studying the
targeting, secretion, and insertion of membrane proteins along the so-called SecA post-
translational pathway of living Escherichia coli. We have shown that the SecA motor ATPase,
a significant drug target, can insert single-span membrane proteins (S-SMPs) across the E. coli
inner membrane. This simplified in vivo model system eliminates the many unanswered
questions about the folding of multi-span MPs along the signal recognition particle (SRP)
pathway, because we gain direct access to the translocon-bilayer partitioning process.
We have engineered two different chimeric protein families for probing systematically S-
SMP stability using TM segments of the form GGPG-H-GPGG (used in an earlier study to
determine a biological hydrophobicity scale using a cell-free eukaryotic system). To determine
stabilities, we have developed methods for cleaving TM segments in vivo via native
intramembrane proteases. We have discovered that many S-SMPs are stable across the
membrane only because their periplasmic & cytoplasmic domains cannot cross the membrane.
We have also discovered that translocon-to-membrane transfer energetics are not equal to
membrane-to-cytoplasm transfer energetics and that stability depends upon growth
temperature. An important aspect of our work is the use of Molecular Dynamics simulations in
concert with experiments to understand the dynamics of the SecYEG translocon. Little is known
about SecA function at the atomic level despite hundreds of papers on the subject. Calling
upon our lab’s expertise in lipid-protein interactions, we have laid the foundation for electron
cryomicroscopic (cryo-EM) studies of the structure of SecA bound to lipid nanodiscs. Our
ambition is to obtain a complete structural view of the SecA-guided secretion process.
SWhite_Abstract_MIRA_2020.docx, 15 January 2020
保存日期:2020年1月15日22:40
摘要
膜蛋白的折叠和组装
许多人类疾病,如囊性纤维化,都是由膜蛋白的错误折叠引起的。
(MPS)在合成和靶向过程中。因此,理解这些原则是很重要的
以及MP折叠和组装的机理。这个问题的一个很大程度上未被探索的部分是
在细胞环境的背景下理解折叠。为了实现这个目标,我们正在研究
膜蛋白的靶向、分泌和插入沿所谓的SECA后-
活体大肠杆菌的翻译途径。我们已经证明了赛卡马达ATPase,
一个重要的药物靶点,可以在大肠杆菌中插入单跨膜蛋白(S-SMPS)
内膜。这一简化的体内模型系统消除了许多未回答的问题
关于多跨MPS沿信号识别粒子(SRP)折叠的问题
途径,因为我们获得了直接进入转位-双层分割过程的途径。
我们已经设计了两个不同的嵌合蛋白家族来系统地探测S-
使用GGPG-H-GPGG形式的TM片段的SMP稳定性(在早期的研究中使用
使用无细胞真核系统确定生物疏水性等级)。要确定
稳定性,我们已经开发出在体内通过天然切割TM片段的方法
膜内蛋白酶。我们发现,许多S-SMP在全国范围内是稳定的
仅因为它们的周质和细胞质区域不能穿过膜。
我们还发现,转位子到膜的转移能不等于
膜到细胞质转移的能量学及其稳定性依赖于生长
温度。我们工作的一个重要方面是使用分子动力学模拟
结合实验了解SecYEG易位子的动力学。鲜为人知
关于Seca在原子水平上的作用,尽管有数百篇关于这个主题的论文。叫唤
基于我们实验室在脂质-蛋白质相互作用方面的专业知识,我们已经为电子
冷冻显微镜(Cryo-EM)研究与脂质纳米盘结合的SecA的结构。我们的
野心是对SecA引导的分泌过程获得一个完整的结构视图。
SWhite_Abstract_Mira_2020.docx,2020年1月15日
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEPHEN H. WHITE其他文献
STEPHEN H. WHITE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEPHEN H. WHITE', 18)}}的其他基金
Proj 2:Neutron Diffraction Studies of Voltage Sensor Molecules in Lipid Bilayers
项目 2:脂质双层中电压传感器分子的中子衍射研究
- 批准号:
7625288 - 财政年份:2009
- 资助金额:
$ 39.25万 - 项目类别:
相似海外基金
Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
- 批准号:
2306962 - 财政年份:2023
- 资助金额:
$ 39.25万 - 项目类别:
Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 39.25万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2022
- 资助金额:
$ 39.25万 - 项目类别:
Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
- 批准号:
DP220102872 - 财政年份:2022
- 资助金额:
$ 39.25万 - 项目类别:
Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2021
- 资助金额:
$ 39.25万 - 项目类别:
Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2020
- 资助金额:
$ 39.25万 - 项目类别:
Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
- 批准号:
2004877 - 财政年份:2020
- 资助金额:
$ 39.25万 - 项目类别:
Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9899988 - 财政年份:2019
- 资助金额:
$ 39.25万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2019
- 资助金额:
$ 39.25万 - 项目类别:
Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9753458 - 财政年份:2019
- 资助金额:
$ 39.25万 - 项目类别:














{{item.name}}会员




