Membrane Protein Folding and Assembly
膜蛋白折叠和组装
基本信息
- 批准号:10411888
- 负责人:
- 金额:$ 39.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:ATP phosphohydrolaseBiologicalBiological ModelsCellsChimeric ProteinsCryoelectron MicroscopyCystic FibrosisCytoplasmCytoplasmic TailDiseaseDrug TargetingElectronsEngineeringEscherichia coliFoundationsGoalsGrowthHydrophobicityLipidsMembraneMembrane ProteinsMethodsMotorPaperPathway interactionsPeptide HydrolasesProcessProtein FamilyProteinsSignal Recognition ParticleStructureSystemTemperatureWorkexperimental studyhuman diseasein vivoin vivo Modelinsightmolecular dynamicsnanodiskperiplasmprotein foldingprotein misfoldingsecretion process
项目摘要
Save date: 15 Jan 2020, 22:40
ABSTRACT
Membrane Protein Folding and Assembly
Many human diseases, such as cystic fibrosis, result from misfolding of membrane proteins
(MPs) during their synthesis and targeting. It is therefore important to understand the principles
and mechanism of MP folding and assembly. A largely unexplored part of the problem is to
understand folding in the context of the cellular milieu. Toward that goal, we are studying the
targeting, secretion, and insertion of membrane proteins along the so-called SecA post-
translational pathway of living Escherichia coli. We have shown that the SecA motor ATPase,
a significant drug target, can insert single-span membrane proteins (S-SMPs) across the E. coli
inner membrane. This simplified in vivo model system eliminates the many unanswered
questions about the folding of multi-span MPs along the signal recognition particle (SRP)
pathway, because we gain direct access to the translocon-bilayer partitioning process.
We have engineered two different chimeric protein families for probing systematically S-
SMP stability using TM segments of the form GGPG-H-GPGG (used in an earlier study to
determine a biological hydrophobicity scale using a cell-free eukaryotic system). To determine
stabilities, we have developed methods for cleaving TM segments in vivo via native
intramembrane proteases. We have discovered that many S-SMPs are stable across the
membrane only because their periplasmic & cytoplasmic domains cannot cross the membrane.
We have also discovered that translocon-to-membrane transfer energetics are not equal to
membrane-to-cytoplasm transfer energetics and that stability depends upon growth
temperature. An important aspect of our work is the use of Molecular Dynamics simulations in
concert with experiments to understand the dynamics of the SecYEG translocon. Little is known
about SecA function at the atomic level despite hundreds of papers on the subject. Calling
upon our lab’s expertise in lipid-protein interactions, we have laid the foundation for electron
cryomicroscopic (cryo-EM) studies of the structure of SecA bound to lipid nanodiscs. Our
ambition is to obtain a complete structural view of the SecA-guided secretion process.
SWhite_Abstract_MIRA_2020.docx, 15 January 2020
保存日期:15 Jan 2020,22:40
摘要
膜蛋白折叠与组装
许多人类疾病,如囊性纤维化,是由膜蛋白的错误折叠引起的
(MPs)在合成和定位过程中。因此,理解这些原则非常重要。
以及MP折叠和组装的机构。问题的一个基本上未被探索的部分是
在细胞环境中理解折叠。为了实现这一目标,我们正在研究
沿着所谓的SecA后膜蛋白的靶向、分泌和插入
活大肠杆菌的翻译途径。我们已经证明SecA马达ATP酶,
作为一个重要的药物靶点,它可以将单跨膜蛋白(S-SMPs)插入E.杆菌
内膜这种简化的体内模型系统消除了许多悬而未决的问题,
关于多跨度MP沿着信号识别颗粒(SRP)折叠的问题
途径,因为我们可以直接进入translocon-双层分配过程。
我们设计了两个不同的嵌合蛋白家族,用于系统地探测S-
使用GGPG-H-GPGG形式的TM片段的SMP稳定性(用于早期研究,
使用无细胞真核系统测定生物疏水性等级)。以确定
为了提高稳定性,我们已经开发了通过天然的方法在体内切割TM片段的方法。
膜内蛋白酶我们已经发现,许多S-SMP在整个
它们的细胞质和周质结构域不能穿过细胞膜。
我们还发现,translocon-膜转移能量不等于
膜到细胞质传递能量,稳定性取决于生长
温度我们工作的一个重要方面是使用分子动力学模拟,
与实验一致,以了解SecYEG易位子的动力学。知之甚少
关于SecA在原子水平上的功能,尽管有数百篇关于这个主题的论文。调用
凭借我们实验室在脂质与蛋白质相互作用方面的专业知识,我们为电子奠定了基础
结合到脂质纳米盘的SecA的结构的低温显微镜(cryo-EM)研究。我们
目标是获得SecA引导的分泌过程的完整结构视图。
SWhite_Abstract_MIRA_2020.docx,2020年1月15日
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEPHEN H. WHITE其他文献
STEPHEN H. WHITE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEPHEN H. WHITE', 18)}}的其他基金
Proj 2:Neutron Diffraction Studies of Voltage Sensor Molecules in Lipid Bilayers
项目 2:脂质双层中电压传感器分子的中子衍射研究
- 批准号:
7625288 - 财政年份:2009
- 资助金额:
$ 39.25万 - 项目类别:
相似海外基金
Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
- 批准号:
2306962 - 财政年份:2023
- 资助金额:
$ 39.25万 - 项目类别:
Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 39.25万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2022
- 资助金额:
$ 39.25万 - 项目类别:
Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
- 批准号:
DP220102872 - 财政年份:2022
- 资助金额:
$ 39.25万 - 项目类别:
Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2021
- 资助金额:
$ 39.25万 - 项目类别:
Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2020
- 资助金额:
$ 39.25万 - 项目类别:
Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
- 批准号:
2004877 - 财政年份:2020
- 资助金额:
$ 39.25万 - 项目类别:
Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9899988 - 财政年份:2019
- 资助金额:
$ 39.25万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2019
- 资助金额:
$ 39.25万 - 项目类别:
Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9753458 - 财政年份:2019
- 资助金额:
$ 39.25万 - 项目类别: