Homeostatic regulation of peripheral oscillators via autonomic circuitry
通过自主电路对外围振荡器进行稳态调节
基本信息
- 批准号:8297426
- 负责人:
- 金额:$ 36.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-01-15 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:Adrenal CortexAdrenal GlandsAffectAnimalsArchitectureBehaviorBehavioralBloodBrainBrain regionCircadian RhythmsComplexCorticosteroneCuesDataDiseaseDissectionEndocrine PhysiologyEnvironmentExcretory functionFeedbackGene ExpressionGenesGenetic TranscriptionGenotypeGlucocorticoidsHomeostasisHormonalHormonesHouse miceHumanHypothalamic structureLabelLeadLesionLightMeasuresMetabolicMetabolismModelingMolecularMusNervous System PhysiologyNeuraxisNeuronsOrganPathway interactionsPeriodicityPeripheralPhasePhotoperiodPhysiologicalProsencephalonPseudorabiesRegulationRelative (related person)RetinalRetinal Ganglion CellsRoleRunningSerotonin Receptor 5-HT1BSignal TransductionSuid Herpesvirus 1SystemTechniquesTemperatureTestingTimeTissuesTransplantationTryptophan 5-monooxygenaseViralWild Type Mouseadrenal transplantationbasebody-mindcircadian pacemakerhormone metabolismneural circuitneurodegenerative dementianeuronal cell bodyneurotoxicraphe nucleirelating to nervous systemresearch studysuprachiasmatic nucleus
项目摘要
DESCRIPTION (provided by applicant): The suprachiasmatic nucleus (SCN) is the primary circadian oscillator in the central nervous system, entrained to the day/night cycle via the retinohypothalamic tract. The circadian-timing system has a complex architecture. In addition to the SCN, subsidiary clocks are located in most, if not all, tissues, organs, and cells of the body including brain regions distinct from the SCN. Peripheral clocks directly regulate local rhythms in
cellular metabolism and hormone secretion and require daily entraining cues from the SCN for coordinated timing of behavioral, physiologic and metabolic circadian rhythms, a primary requisite for a healthy body and mind. The SCN maintains global circadian synchrony via its connections with autonomic circuits innervating peripheral organs and by its regulation of rhythmic hormone secretion such as adrenal glucocorticoids. Rhythmic corticosterone (CORT) signals induce the rhythmic expression of a diverse array of genes including clock genes. Temporal homeostasis is a complex interplay between central and autonomic neural circuits and hormonal feedback from the adrenal. Changes in circadian function and the accompanying changes in phase have been associated with several human disorders. A reduction in the amplitude of the CORT diurnal rhythm may exert a wide range of effects on metabolism and central nervous system function. Preliminary data demonstrate that alterations in entrainment of the SCN to the day/night cycle produce changes in the diurnal CORT rhythm; as entrainment phase angle is progressively more delayed relative to light offset the amplitude of the diurnal corticosterone rhythm is progressively reduced, up to as much as 50%. Specific Aim 1 uses transcriptional profiles of clock genes to extend preliminary findings and examines potential mechanisms by which altered entrainment to the day/night cycle reduces the amplitude of the diurnal CORT rhythm. Specific Aim 2 describes the neural circuits (that may circumvent the SCN) that send signals to the adrenal. Retinal input to pre-autonomic neurons is identified by anterograde tracing of retinal efferents to the hypothalamus in conjunction with labeling of pre-autonomic neurons in the hypothalamus via transneuronal retrograde tracing using pseudorabies virus injected into the adrenal. Functional experiments target identified pre-autonomic hypothalamic neurons for neurotoxic lesioning to determine effects on adrenal function. Specific Aim 3 utilizes transplantation of adrenals from mice with arrhythmic adrenal oscillators (Per2/Cry1 dKO mice) into adrenalectomized wild type mice with altered entrainment to dissect the functional roles of the SCN and adrenal oscillators, and the L:D cycle on the regulation of the diurnal rhythm of CORT secretion. Understanding how retinal circuits and the central clock regulate peripheral oscillators via autonomic circuits will aid in our ability to beter understand and treat altered circadian rhythms.
PUBLIC HEALTH RELEVANCE: There is growing recognition that coordinated timing of behavioral, physiologic and metabolic circadian rhythms is required for a healthy body and mind. The circadian timing system is complex, with the primary clock located in the brain and subordinate clocks located in most, if not all, tissues, organs, and cells of the body. Long term disruption or dysregulation between brain and peripheral clocks can lead to changes in hormone secretion and metabolism that correlate with disease states and certain dementias and neurodegenerative conditions.
描述(由申请人提供):视交叉上核(SCN)是中枢神经系统中的主要昼夜节律振荡器,通过视网膜下丘脑束参与昼夜循环。昼夜节律计时系统具有复杂的体系结构。除了SCN之外,辅助时钟位于身体的大多数(如果不是全部)组织,器官和细胞中,包括与SCN不同的大脑区域。外围生物钟直接调节局部节律,
细胞代谢和激素分泌,并需要每天从SCN中提取线索,以协调行为、生理和代谢昼夜节律的时间,这是健康身心的基本要求。SCN通过其与支配外周器官的自主神经回路的连接以及通过其对节律性激素分泌(诸如肾上腺糖皮质激素)的调节来维持全球昼夜同步。节律性皮质酮(CORT)信号诱导包括时钟基因在内的多种基因的节律性表达。时间内稳态是中枢和自主神经回路与肾上腺激素反馈之间的复杂相互作用。昼夜节律功能的变化和伴随的相位变化与几种人类疾病有关。CORT昼夜节律幅度的降低可能对代谢和中枢神经系统功能产生广泛的影响。初步数据表明,在夹带的SCN的日/夜周期的变化产生的昼夜CORT节律的变化,作为夹带相位角是逐渐更多的延迟相对于光偏移的昼夜皮质酮节律的幅度逐渐减少,高达50%。具体目标1使用时钟基因的转录谱来扩展初步的发现,并检查潜在的机制,改变夹带到白天/黑夜周期降低昼夜CORT节律的幅度。具体目标2描述了向肾上腺发送信号的神经回路(可能绕过SCN)。通过顺行追踪视网膜传出神经到下丘脑,并通过使用注射到肾上腺中的伪狂犬病病毒的跨神经元逆行追踪标记下丘脑中的前自主神经元,来识别对前自主神经元的视网膜输入。功能实验的目标确定前自主下丘脑神经元神经毒性损伤,以确定对肾上腺功能的影响。具体目标3利用移植肾上腺从小鼠肾上腺振荡器(Per 2/Cry 1 dKO小鼠)到肾上腺切除的野生型小鼠与改变夹带解剖SCN和肾上腺振荡器的功能作用,和L:D周期的调节CORT分泌的昼夜节律。了解视网膜回路和中央时钟如何通过自主回路调节周边振荡器将有助于我们更好地理解和治疗昼夜节律改变的能力。
公共卫生相关性:越来越多的人认识到,行为、生理和代谢昼夜节律的协调定时是健康的身心所必需的。昼夜节律计时系统是复杂的,主要时钟位于大脑中,次要时钟位于身体的大多数(如果不是全部)组织,器官和细胞中。大脑和外周生物钟之间的长期中断或失调可导致与疾病状态和某些痴呆症和神经退行性疾病相关的激素分泌和代谢的变化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GARY Edward PICKARD其他文献
GARY Edward PICKARD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GARY Edward PICKARD', 18)}}的其他基金
Virus-host interactions governing alpha-herpesvirus genome delivery and neuroinvasion
控制α-疱疹病毒基因组传递和神经侵袭的病毒-宿主相互作用
- 批准号:
10569016 - 财政年份:2020
- 资助金额:
$ 36.57万 - 项目类别:
Virus-host interactions governing alpha-herpesvirus genome delivery and neuroinvasion
控制α-疱疹病毒基因组传递和神经侵袭的病毒-宿主相互作用
- 批准号:
10328227 - 财政年份:2020
- 资助金额:
$ 36.57万 - 项目类别:
Homeostatic regulation of peripheral oscillators via autonomic circuitry
通过自主电路对外围振荡器进行稳态调节
- 批准号:
8975244 - 财政年份:2012
- 资助金额:
$ 36.57万 - 项目类别:
Homeostatic regulation of peripheral oscillators via autonomic circuitry
通过自主电路对外围振荡器进行稳态调节
- 批准号:
8410094 - 财政年份:2012
- 资助金额:
$ 36.57万 - 项目类别:
Homeostatic regulation of peripheral oscillators via autonomic circuitry
通过自主电路对外围振荡器进行稳态调节
- 批准号:
8774933 - 财政年份:2012
- 资助金额:
$ 36.57万 - 项目类别:
Homeostatic regulation of peripheral oscillators via autonomic circuitry
通过自主电路对外围振荡器进行稳态调节
- 批准号:
8595341 - 财政年份:2012
- 资助金额:
$ 36.57万 - 项目类别:
Dual PRV Transsynaptic Labeling: EGFP & mRFP1 Recepters
双 PRV 突触标记:EGFP
- 批准号:
6766727 - 财政年份:2003
- 资助金额:
$ 36.57万 - 项目类别:
Dual PRV Transsynaptic Labeling: EGFP & mRFP1 Reporters
双 PRV 突触标记:EGFP
- 批准号:
6677756 - 财政年份:2003
- 资助金额:
$ 36.57万 - 项目类别:
Retinal Neurons Afferent to the Circadian System
传入昼夜节律系统的视网膜神经元
- 批准号:
6405254 - 财政年份:2001
- 资助金额:
$ 36.57万 - 项目类别:
Retinal Neurons Afferent to the Circadian System
传入昼夜节律系统的视网膜神经元
- 批准号:
6539179 - 财政年份:2001
- 资助金额:
$ 36.57万 - 项目类别:
相似海外基金
Role of hypothalamic MC4R in glucose homeostasis via a novel neuroendocrine circuit involving the kidneys and adrenal glands
下丘脑 MC4R 通过涉及肾脏和肾上腺的新型神经内分泌回路在葡萄糖稳态中的作用
- 批准号:
10454300 - 财政年份:2021
- 资助金额:
$ 36.57万 - 项目类别:
Role of hypothalamic MC4R in glucose homeostasis via a novel neuroendocrine circuit involving the kidneys and adrenal glands
下丘脑 MC4R 通过涉及肾脏和肾上腺的新型神经内分泌回路在葡萄糖稳态中的作用
- 批准号:
10666539 - 财政年份:2021
- 资助金额:
$ 36.57万 - 项目类别:
Role of hypothalamic MC4R in glucose homeostasis via a novel neuroendocrine circuit involving the kidneys and adrenal glands
下丘脑 MC4R 通过涉及肾脏和肾上腺的新型神经内分泌回路在葡萄糖稳态中的作用
- 批准号:
10296199 - 财政年份:2021
- 资助金额:
$ 36.57万 - 项目类别:
Role of hypothalamic MC4R in glucose homeostasis via a novel neuroendocrine circuit involving the kidneys and adrenal glands
下丘脑 MC4R 通过涉及肾脏和肾上腺的新型神经内分泌回路在葡萄糖稳态中的作用
- 批准号:
10854123 - 财政年份:2021
- 资助金额:
$ 36.57万 - 项目类别:
Interaction of adrenal glands and liver in canine hepatocellular carcinoma
犬肝细胞癌中肾上腺和肝脏的相互作用
- 批准号:
20H03139 - 财政年份:2020
- 资助金额:
$ 36.57万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Role of dendritic cells in adrenal glands of healthy and arthritic rats
树突状细胞在健康和关节炎大鼠肾上腺中的作用
- 批准号:
235438724 - 财政年份:2013
- 资助金额:
$ 36.57万 - 项目类别:
Research Grants
Role of neural cell adhesion molecules in structural and functional remodeling of fetal adrenal glands
神经细胞粘附分子在胎儿肾上腺结构和功能重塑中的作用
- 批准号:
20591305 - 财政年份:2008
- 资助金额:
$ 36.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Search for the novel etiology in disorders of sex development (DSD) caused by abnormalities of adrenal glands and gonads.
寻找由肾上腺和性腺异常引起的性发育障碍 (DSD) 的新病因。
- 批准号:
16086202 - 财政年份:2004
- 资助金额:
$ 36.57万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
Effects of endocrine disrupters on function of thyroid gland, adrenal glands and gonads
内分泌干扰物对甲状腺、肾上腺和性腺功能的影响
- 批准号:
11839003 - 财政年份:1999
- 资助金额:
$ 36.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Roles of Thyroid and Adrenal glands in the regulation of hypothalamo-hypophysial-ovarian axis in the rat.
甲状腺和肾上腺在大鼠下丘脑-垂体-卵巢轴调节中的作用。
- 批准号:
06660375 - 财政年份:1994
- 资助金额:
$ 36.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




