Micro-tumor detection by quantifying tumor-induced vascular abnormalities (PQ-13)
通过量化肿瘤引起的血管异常来检测微肿瘤 (PQ-13)
基本信息
- 批准号:8384153
- 负责人:
- 金额:$ 45.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcousticsAddressAlgorithmsAngiographyAnimalsBenignBiological MarkersBlood VesselsBreast Cancer ModelCaliberCancer DetectionCell CountCellsCharacteristicsClassificationClinicalContrast MediaControl AnimalDataDetectionDevelopmentDiscriminant AnalysisEarly DiagnosisEngineeringEquationFoundationsFrequenciesFutureGenetically Engineered MouseGoalsHistologyImageImage AnalysisImaging DeviceImaging TechniquesIn VitroLesionMalignant - descriptorMalignant NeoplasmsMapsMeasurementMedicineMicroscopyModelingMorphologyNoiseOnset of illnessOpticsPalpablePenetrationPlayProcessProtocols documentationRandomizedReceiver Operating CharacteristicsResolutionRiskRodentRoleRouteScreening for cancerSensitivity and SpecificitySignal TransductionSolid NeoplasmSpecificityStructureSystemSystems AnalysisTechnologyTestingTissuesTreatment outcomeTumor VolumeUltrasonographyUnited States National Institutes of HealthVascular remodelingWorkangiogenesisbasecancer cellclinical applicationclinical practiceclinically relevantcostdesignimaging modalityimprovedin vivoinnovationintravital microscopymalignant breast neoplasmmillimetermouse modelneoplastic cellnew technologynovelpre-clinicalpreclinical studyprospectiveresponsesuccesstumor
项目摘要
DESCRIPTION (provided by applicant): Current imaging modalities allow detection of tumors composed of approximately 107 cells or in the range of 1 cubic millimeter. Any increase in imaging sensitivity provides valuable advances in tumor detection and also treatment outcomes; however, a major increase in detection sensitivity would provide a radical change in how we might employ imaging in clinical practice. Ultrasound (US) will likely play a significant and expanding role in oncological imaging in the future because it is safe, low-cost, and readily portable. However, due to fundamental resolution limitations, clinical US can only detect tumor masses on the order of a few millimeters, or larger. In order to improve this detection sensitivity a paradigm shift in the US approach for imaging tumors is needed. This project proposes such a shift. It is well known that tumors dramatically distort microvasculature throughout the angiogenic process. Data show that substantial changes in microvasculature structure occur after the arrival of only 10s to 100s of tumor cells, that these changes extend to vessels that are
relatively large (hundreds of microns in diameter), and that microvascular changes extend well beyond tumor margins, even soon after the onset of disease. These unique microvascular "cancer signatures" provide us with a means to overcome traditional resolution limitations which otherwise impair micro-tumor detection. Thus, our innovative response to improving imaging sensitivity to micro-cancers is to detect these microvascular changes, rather than the solid tumor itself. Prior groups have illustrated the potential for this concept using optical microscopy however optical microscopy is inherently non-clinically translatable for this application, and hence we will utilize a novel ultrasound approach. Although previously, ultrasound has not provided utility in assessing changes in microvascular structure, our group has recently implemented a new US imaging technique called "Acoustic Angiography" which provides supreme signal-to-noise and high resolution for imaging microvessel structure. This new imaging technique thus enables microvessel segmentation and tortuosity quantification. Our first hypothesis is that we can optimize this imaging approach for adequate spatial resolution and depth of penetration for clinical implementation. Our second hypothesis is that we can use acoustic angiography to detect tumor-induced microvascular changes when tumors are at least two to three orders of magnitude smaller than current detection limits. Our third hypothesis is that we can develop current segmentation and analysis algorithms which will characterize microvessel morphology and provide a specific and sensitive classification approach for detecting tissue that is at risk for hosting micro-tumors. Encouraging preliminary data have already illustrated our ability use acoustic angiography to discriminate small tumors and healthy tissue based on an analysis of microvessel morphology alone, and these further studies will enable a comprehensive development of this promising new technology. Our approach will involve in-vitro studies as well as preclinical in-vivo studies using clinically-relevant geneticaly engineered models of breast cancer.
PUBLIC HEALTH RELEVANCE: This application is a response to the NCI Provocative Question #13: "Can tumors be detected when they are two to three orders of magnitude smaller than those currently detected with in vivo imaging modalities?" We propose to evaluate a novel ultrasound imaging and analysis protocol to detect the cancer-induced microvascular changes which evolve as micro tumors grow from currently undetectable sizes (<1,000 cells) to palpable masses (~10^7 cells). The proposed technology represents a promising route to early cancer detection, and will also have substantial significance in differentiation of benign and malignant lesions as well as tumor response to therapy in personalized medicine.
描述(由申请人提供):目前的成像模式允许检测由约107个细胞组成或在1立方毫米范围内的肿瘤。成像灵敏度的任何提高都为肿瘤检测和治疗结果提供了有价值的进步;然而,检测灵敏度的大幅提高将为我们在临床实践中如何使用成像提供根本性的改变。超声(US)可能会在未来的肿瘤成像中发挥重要和扩大的作用,因为它是安全的,低成本的,易于携带。然而,由于基本的分辨率限制,临床US只能检测几毫米或更大的肿瘤肿块。为了提高这种检测灵敏度,需要在用于成像肿瘤的US方法中进行范式转变。这个项目提出了这样的转变。众所周知,肿瘤在整个血管生成过程中显著扭曲微血管。数据显示,微血管结构的实质性变化发生在仅10秒至100秒的肿瘤细胞到达后,这些变化延伸到血管,
肿瘤的直径相对较大(直径数百微米),并且微血管变化远远超出肿瘤边缘,甚至在疾病发作后不久。这些独特的微血管“癌症特征”为我们提供了一种克服传统分辨率限制的方法,否则会损害微肿瘤检测。因此,我们对提高微癌成像灵敏度的创新反应是检测这些微血管变化,而不是实体瘤本身。先前的研究小组已经使用光学显微镜说明了这一概念的潜力,但光学显微镜本身就不适合这种应用,因此我们将利用一种新的超声方法。虽然以前,超声没有提供效用,在评估微血管结构的变化,我们的小组最近实施了一种新的美国成像技术,称为“声学血管造影”,它提供了最高的信噪比和高分辨率的微血管结构成像。因此,这种新的成像技术能够实现微血管分割和迂曲度定量。我们的第一个假设是,我们可以优化这种成像方法,为临床实施提供足够的空间分辨率和穿透深度。我们的第二个假设是,当肿瘤比目前的检测极限小至少两到三个数量级时,我们可以使用声学血管造影来检测肿瘤引起的微血管变化。我们的第三个假设是,我们可以开发当前的分割和分析算法,这些算法将表征微血管形态,并提供一种特异性和敏感的分类方法,用于检测有微肿瘤风险的组织。令人鼓舞的初步数据已经说明了我们使用声学血管造影术仅基于微血管形态分析来区分小肿瘤和健康组织的能力,这些进一步的研究将使这项有前途的新技术得到全面发展。我们的方法将涉及体外研究以及临床前体内研究,使用临床相关的乳腺癌基因工程模型。
公共卫生关系:该应用程序是对NCI挑衅性问题#13的回应:“当肿瘤比目前使用体内成像模式检测到的肿瘤小两到三个数量级时,是否可以检测到肿瘤?“我们建议评估一种新的超声成像和分析方案,以检测癌症引起的微血管变化,这些变化随着微肿瘤从目前无法检测的大小(<1,000个细胞)发展到可触及的肿块(~10^7个细胞)。所提出的技术代表了早期癌症检测的一种有前途的途径,并且在良性和恶性病变的区分以及肿瘤对个性化医学治疗的反应方面也将具有实质性意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul A Dayton其他文献
Therapeutic ultrasound as a potential male contraceptive: power, frequency and temperature required to deplete rat testes of meiotic cells and epididymides of sperm determined using a commercially available system
- DOI:
10.1186/1477-7827-10-7 - 发表时间:
2012-01-01 - 期刊:
- 影响因子:4.700
- 作者:
James K Tsuruta;Paul A Dayton;Caterina M Gallippi;Michael G O'Rand;Michael A Streicker;Ryan C Gessner;Thomas S Gregory;Erick JR Silva;Katherine G Hamil;Glenda J Moser;David C Sokal - 通讯作者:
David C Sokal
Paul A Dayton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul A Dayton', 18)}}的其他基金
Parametric optimization of ultrasound-mediated immuno-modulation for pancreatic cancer therapy
超声介导的胰腺癌免疫调节的参数优化
- 批准号:
9979314 - 财政年份:2020
- 资助金额:
$ 45.69万 - 项目类别:
Parametric optimization of ultrasound-mediated immuno-modulation for pancreatic cancer therapy
超声介导的胰腺癌免疫调节的参数优化
- 批准号:
10375345 - 财政年份:2020
- 资助金额:
$ 45.69万 - 项目类别:
Parametric optimization of ultrasound-mediated immuno-modulation for pancreatic cancer therapy
超声介导的胰腺癌免疫调节的参数优化
- 批准号:
10092130 - 财政年份:2020
- 资助金额:
$ 45.69万 - 项目类别:
Treating Tumoral Hypoxia via Ultrasound-Guided Oxygen Release for Improving Radiation Therapy
通过超声引导释氧治疗肿瘤缺氧以改善放射治疗
- 批准号:
9978579 - 财政年份:2018
- 资助金额:
$ 45.69万 - 项目类别:
Treating Tumoral Hypoxia via Ultrasound-Guided Oxygen Release for Improving Radiation Therapy
通过超声引导释氧治疗肿瘤缺氧以改善放射治疗
- 批准号:
10402933 - 财政年份:2018
- 资助金额:
$ 45.69万 - 项目类别:
Treating Tumoral Hypoxia via Ultrasound-Guided Oxygen Release for Improving Radiation Therapy
通过超声引导释氧治疗肿瘤缺氧以改善放射治疗
- 批准号:
10632112 - 财政年份:2018
- 资助金额:
$ 45.69万 - 项目类别:
Treating Tumoral Hypoxia via Ultrasound-Guided Oxygen Release for Improving Radiation Therapy
通过超声引导释氧治疗肿瘤缺氧以改善放射治疗
- 批准号:
10163814 - 财政年份:2018
- 资助金额:
$ 45.69万 - 项目类别:
Acoustic Angiography Using Dual-Frequency and Ultrawideband CMUT Arrays
使用双频和超宽带 CMUT 阵列的声学血管造影
- 批准号:
9899252 - 财政年份:2018
- 资助金额:
$ 45.69万 - 项目类别:
High Frame Rate 3-D Super Resolution Ultrasound Microvascular Imaging
高帧率 3D 超分辨率超声微血管成像
- 批准号:
10478978 - 财政年份:2017
- 资助金额:
$ 45.69万 - 项目类别:
High Frame Rate 3-D Super Resolution Ultrasound Microvascular Imaging
高帧率 3D 超分辨率超声微血管成像
- 批准号:
10249991 - 财政年份:2017
- 资助金额:
$ 45.69万 - 项目类别:
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 45.69万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 45.69万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 45.69万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 45.69万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 45.69万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 45.69万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 45.69万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 45.69万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 45.69万 - 项目类别:
Discovery Launch Supplement
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 45.69万 - 项目类别:
Standard Grant














{{item.name}}会员




