Acoustic Angiography Using Dual-Frequency and Ultrawideband CMUT Arrays
使用双频和超宽带 CMUT 阵列的声学血管造影
基本信息
- 批准号:9899252
- 负责人:
- 金额:$ 45.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcousticsAngiographyArtificial ImplantsBehaviorBlood Vessel TissueBlood VesselsBreastChest wall structureClinicalCollaborationsContrast MediaDataDetectionDevelopmentDevicesDimensionsDiseaseElementsFingerprintFosteringFrequenciesImageImaging TechniquesIn VitroLesionMalignant - descriptorMalignant NeoplasmsMammary UltrasonographyMammographyMeasurementMechanicsMethodsMicrobubblesMorphologic artifactsNoisePatternPensionsPerformancePhysiologic pulsePopulationProblem SolvingProcessProductionPropertyProstatePublic HealthResearchResearch PersonnelResolutionScanningSensitivity and SpecificitySignal TransductionSpecificityStructureSystemTechniquesTechnologyTestingThyroid GlandTissuesTransducersUltrasonic TransducerUltrasonographyValidationVisualizationWomanWorkangiogenesisanimal imagingbasebreast lesionbreast malignanciescancer biomarkerscancer imagingclinical translationcontrast enhancedcontrast imagingcostdesignelectric impedanceexperiencehigh resolution imagingimaging approachimprovedin vivomillimeternoveloperationpre-clinicalpreclinical studypressureprototypestandard of caretechnology validationtooltransmission processtumoryoung woman
项目摘要
ABSTRACT
Over the past few years, progress in the development of ultrawideband transmit-receive systems for ultrasound
imaging has enabled new imaging paradigms. One such application, which our group has developed is
‘acoustic angiography’, a superharmonic imaging technique which is based on the fact that when excited with a
moderate acoustic pressure near their resonance (2-4 MHz; around MI of 0.5-0.7) ultrasound contrast agents
produce broadband content which extends well past 15 MHz. The result is that signals from ultrasound
contrast agents can be separated from those from tissue with high efficacy, and the resulting images benefit
from the high resolution received data. This new imaging technique has enabled the acquisition of images of
microvascular structure with unprecedented resolution and signal-to-noise ratio, and created a paradigm shift
in how ultrasound might be used pre-clinically and clinically in assessing tumor associated angiogenesis. For
clinical translation, we are targeting to improve the specificity of ultrasound to breast malignancies, and
furthermore to improve sensitivity to very small lesions using acoustic angiography. In prior studies, our work
has shown the use of acoustic angiography to detect micro-tumors with very high sensitivity and specificity
based on their microvascular angiogenic signature, rather than relying on difference in tissue properties of the
tumor mass itself. Although the presence of this high-frequency energy from microbubbles has been known
about for over a decade, it has not been taken advantage of until our recent work because it requires
transducers with an extraordinarily wide bandwidth not currently available. Although our prior studies have
shown great promise using multi-element multi-frequency piezoelectric transducers, a more natural match for
this moderate-pressure high-bandwidth application is the capacitive micromachined ultrasonic transducer
(CMUT). The use of CMUTs provides benefits over piezoelectrics such as the ability to perform with a very
wide bandwidth as well as the possibility of multi-frequency configurations through their micromachined
production process. In our preliminary studies, we have experimentally shown the feasibility of dual-frequency
CMUTs for transmitting low frequency excitation and receive high frequency harmonics. We have also
demonstrated novel techniques for eliminating the natural harmonic content produced by CMUT transducers, a
limitation which was previously thought to hamper the performance of these devices for nonlinear microbubble
imaging. In this project, a team of investigators with extensive experience in contrast ultrasound imaging and
acoustic angiography (Dayton) and CMUT transducer design and fabrication (Oralkan) continue to work
together to achieve new performance levels in CMUT transducers for contrast-enhanced ultrasound imaging,
with the intent of developing a new cancer imaging approach using CMUT arrays and microbubble contrast
agents.
摘要
在过去的几年里,超声超宽带发射-接收系统的开发进展
成像使新的成像范例成为可能。我们团队开发的一个这样的应用程序是
“声学血管造影术”,这是一种超谐成像技术,它基于这样一个事实,即当受到
其共振附近的中等声压(2-4 MHz;MI约为0.5-0.7)超声造影剂
产生远远超过15 MHz的宽带内容。结果是来自超声波信号
可以将造影剂与组织中的造影剂高效分离,所产生的图像受益
从高分辨率接收到的数据。这项新的成像技术使获取
具有前所未有的分辨率和信噪比的微血管结构,并创造了一种范式转变
超声如何在临床前和临床上用于评估肿瘤相关血管生成。为
临床翻译,我们的目标是提高超声对乳腺恶性肿瘤的特异性,以及
此外,使用声学血管造影术可以提高对微小病变的敏感度。在之前的研究中,我们的工作
已经证明使用声学血管造影术来检测微小肿瘤具有非常高的敏感性和特异性
基于它们的微血管新生血管特征,而不是依赖于
肿瘤本身。虽然已经知道这种来自微泡的高频能量的存在
大约十多年来,它一直没有被我们最近的工作所利用,因为它需要
具有极宽带宽的换能器目前不可用。尽管我们之前的研究已经
使用多元素多频压电换能器显示出巨大的前景,更自然地匹配
这种中压高带宽的应用是电容式微机械超声换能器。
(CMUT)。CMUT的使用提供了比压电性材料更好的优点,例如能够在非常
宽带宽以及通过微机械加工实现多频率配置的可能性
生产工艺。在我们的初步研究中,我们已经通过实验证明了双频的可行性。
用于传输低频激励和接收高频谐波的CMUT。我们还有
展示了消除CMUT换能器产生的自然谐波含量的新技术,
以前被认为阻碍了这些非线性微泡装置的性能的限制
成像。在这个项目中,一个在声学造影和超声成像方面拥有丰富经验的研究团队
声学血管造影术(代顿)和CMUT换能器设计和制造(Oralkan)继续工作
共同实现用于对比增强超声成像的CMUT换能器的新性能水平,
意在开发一种使用CMUT阵列和微泡造影剂的新的癌症成像方法
探员们。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul A Dayton其他文献
Therapeutic ultrasound as a potential male contraceptive: power, frequency and temperature required to deplete rat testes of meiotic cells and epididymides of sperm determined using a commercially available system
- DOI:
10.1186/1477-7827-10-7 - 发表时间:
2012-01-01 - 期刊:
- 影响因子:4.700
- 作者:
James K Tsuruta;Paul A Dayton;Caterina M Gallippi;Michael G O'Rand;Michael A Streicker;Ryan C Gessner;Thomas S Gregory;Erick JR Silva;Katherine G Hamil;Glenda J Moser;David C Sokal - 通讯作者:
David C Sokal
Paul A Dayton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul A Dayton', 18)}}的其他基金
Parametric optimization of ultrasound-mediated immuno-modulation for pancreatic cancer therapy
超声介导的胰腺癌免疫调节的参数优化
- 批准号:
9979314 - 财政年份:2020
- 资助金额:
$ 45.18万 - 项目类别:
Parametric optimization of ultrasound-mediated immuno-modulation for pancreatic cancer therapy
超声介导的胰腺癌免疫调节的参数优化
- 批准号:
10375345 - 财政年份:2020
- 资助金额:
$ 45.18万 - 项目类别:
Parametric optimization of ultrasound-mediated immuno-modulation for pancreatic cancer therapy
超声介导的胰腺癌免疫调节的参数优化
- 批准号:
10092130 - 财政年份:2020
- 资助金额:
$ 45.18万 - 项目类别:
Treating Tumoral Hypoxia via Ultrasound-Guided Oxygen Release for Improving Radiation Therapy
通过超声引导释氧治疗肿瘤缺氧以改善放射治疗
- 批准号:
9978579 - 财政年份:2018
- 资助金额:
$ 45.18万 - 项目类别:
Treating Tumoral Hypoxia via Ultrasound-Guided Oxygen Release for Improving Radiation Therapy
通过超声引导释氧治疗肿瘤缺氧以改善放射治疗
- 批准号:
10402933 - 财政年份:2018
- 资助金额:
$ 45.18万 - 项目类别:
Treating Tumoral Hypoxia via Ultrasound-Guided Oxygen Release for Improving Radiation Therapy
通过超声引导释氧治疗肿瘤缺氧以改善放射治疗
- 批准号:
10632112 - 财政年份:2018
- 资助金额:
$ 45.18万 - 项目类别:
Treating Tumoral Hypoxia via Ultrasound-Guided Oxygen Release for Improving Radiation Therapy
通过超声引导释氧治疗肿瘤缺氧以改善放射治疗
- 批准号:
10163814 - 财政年份:2018
- 资助金额:
$ 45.18万 - 项目类别:
High Frame Rate 3-D Super Resolution Ultrasound Microvascular Imaging
高帧率 3D 超分辨率超声微血管成像
- 批准号:
10478978 - 财政年份:2017
- 资助金额:
$ 45.18万 - 项目类别:
High Frame Rate 3-D Super Resolution Ultrasound Microvascular Imaging
高帧率 3D 超分辨率超声微血管成像
- 批准号:
10249991 - 财政年份:2017
- 资助金额:
$ 45.18万 - 项目类别:
High Frame Rate 3-D Super Resolution Ultrasound Microvascular Imaging
高帧率 3D 超分辨率超声微血管成像
- 批准号:
9393119 - 财政年份:2017
- 资助金额:
$ 45.18万 - 项目类别:
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 45.18万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 45.18万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 45.18万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 45.18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 45.18万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 45.18万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 45.18万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 45.18万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 45.18万 - 项目类别:
Discovery Launch Supplement
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 45.18万 - 项目类别:
Standard Grant














{{item.name}}会员




