High Frame Rate 3-D Super Resolution Ultrasound Microvascular Imaging

高帧率 3D 超分辨率超声微血管成像

基本信息

  • 批准号:
    10249991
  • 负责人:
  • 金额:
    $ 66.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-10 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT Recently, the revolutionary technology of super localization microscopy in the optical imaging domain has been translated into the medical ultrasound domain. By localizing the centers of scattering contrast agents, a similar ultrasound localization microscopy technique, also referred to as contrast enhanced super-resolution (CESR) imaging, has been demonstrated with ultrasound. This novel technique enables imaging of microvessels at resolutions as small as ten micrometers, over an order of magnitude smaller than the ultrasound diffraction limit, and at depths much greater than traditionally limited by frequency. In order to achieve advances in all three of these seeming paradoxical dimensions - super-resolution contrast imaging requires that thousands of frames of data to be analyzed, making this technique much slower than standard ultrasound imaging. The result is that super-resolution imaging would be difficult if not impossible to translate to the clinic in its current form with current clinical hardware, especially if 3-D imaging is desired (which it is for microvascular morphological analysis), as a single 3-D image volume would take tens of minutes to acquire. However, there is a solution to this, which our group proposes to achieve in this project. Recent advances in ultrasound hardware have enabled ultra-high frame rate processing. Our academic and clinical teams at UNC Chapel Hill are partnering with Verasonics, Inc, a world leading industrial partner in next-generation ultrasound systems, to develop and translate the first high-frame rate 3-D super resolution imaging modality to the clinic. We will do this by first designing and constructing a 1024 channel ultra-high frame rate ultrasound system, designed to operate with a 32x32 matrix transducer. Ultra-fast processors, large RAM buffers, GPUs, and high- bandwidth data transfer hardware will be utilized to handle the massive data acquisition and processing. New software and implementation approaches designed at UNC, including our innovative adaptive multi-focus beamforming approach, will further increase sensitivity and resolution at clinically relevant depths, and enable full 3-D volume acquisitions at volume frame rates over 5000 FPS, suitable for fast 3-D super-resolution imaging in humans. Our approach will be validated in phantoms, rodent models of human disease, and in two different clinical applications where ultrasound specificity is limited, breast, and thyroid. Our motivation is to develop super-resolution imaging as a novel new approach for imaging angiogenesis – one of the hallmarks of cancer, as a new biomarker target for both diagnostics and assessment of response to therapy. The ability to differentiate lesions based on microvascular fingerprint, rather than tumor anatomy, would be a paradigm shift in ultrasound diagnostics, and will improve the specificity of ultrasound to malignancy, and advance clinically needed in breast, prostate, thyroid, and other oncological applications. However, the advancement of the proposed technology will undoubtedly open doors to other clinical applications as well, such as wound healing and vasa vasorum imaging in atherosclerosis.
抽象的 近日,光学成像领域革命性的超定位显微镜技术 已被转化为医学超声领域。通过定位散射造影剂的中心, 类似的超声定位显微镜技术,也称为对比度增强超分辨率 (CESR) 成像,已通过超声波得到证实。这种新技术能够对微血管进行成像 分辨率小至十微米,比超声波衍射小一个数量级 极限,并且深度比传统上受频率限制的深度大得多。为了实现这三个方面的进步 这些看似矛盾的维度——超分辨率对比成像需要数千帧 需要分析的数据量,使得该技术比标准超声成像慢得多。结果是 超分辨率成像即使不是不可能,也很难以目前的形式转化为临床应用。 临床硬件,特别是如果需要 3D 成像(用于微血管形态分析),如 获取单个 3D 图像体积需要数十分钟。 然而,有一个解决方案,我们的小组建议在这个项目中实现。最新进展 超声硬件中已经实现了超高帧速率处理。我们在北卡罗来纳大学的学术和临床团队 Chapel Hill 正在与 Verasonics, Inc 合作,后者是下一代超声波领域的世界领先工业合作伙伴 系统,开发第一个高帧率 3D 超分辨率成像模式并将其应用于临床。 我们将首先设计和构建一个 1024 通道超高帧率超声系统来实现这一目标, 设计用于与 32x32 矩阵传感器一起操作。超快处理器、大容量 RAM 缓冲区、GPU 和高性能 带宽数据传输硬件将用于处理海量数据采集和处理。新的 北卡罗来纳大学设计的软件和实施方法,包括我们创新的自适应多焦点 波束形成方法,将进一步提高临床相关深度的灵敏度和分辨率,并使 以超过 5000 FPS 的体积帧速率进行全 3D 体积采集,适用于快速 3D 超分辨率成像 在人类中。我们的方法将在人类疾病的体模、啮齿动物模型以及两种不同的模型中得到验证 超声特异性有限的临床应用、乳腺和甲状腺。 我们的动机是开发超分辨率成像作为血管生成成像的新方法 – 癌症的标志之一,作为诊断和评估反应的新生物标志物目标 治疗。基于微血管指纹而不是肿瘤解剖学来区分病变的能力将 成为超声诊断的范式转变,并将提高超声对恶性肿瘤的特异性,以及 推进乳腺、前列腺、甲状腺和其他肿瘤应用的临床需要。然而, 所提出的技术的进步无疑也将为其他临床应用打开大门,例如 如动脉粥样硬化中的伤口愈合和血管血管成像。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul A Dayton其他文献

Therapeutic ultrasound as a potential male contraceptive: power, frequency and temperature required to deplete rat testes of meiotic cells and epididymides of sperm determined using a commercially available system
  • DOI:
    10.1186/1477-7827-10-7
  • 发表时间:
    2012-01-01
  • 期刊:
  • 影响因子:
    4.700
  • 作者:
    James K Tsuruta;Paul A Dayton;Caterina M Gallippi;Michael G O'Rand;Michael A Streicker;Ryan C Gessner;Thomas S Gregory;Erick JR Silva;Katherine G Hamil;Glenda J Moser;David C Sokal
  • 通讯作者:
    David C Sokal

Paul A Dayton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul A Dayton', 18)}}的其他基金

Parametric optimization of ultrasound-mediated immuno-modulation for pancreatic cancer therapy
超声介导的胰腺癌免疫调节的参数优化
  • 批准号:
    9979314
  • 财政年份:
    2020
  • 资助金额:
    $ 66.71万
  • 项目类别:
Parametric optimization of ultrasound-mediated immuno-modulation for pancreatic cancer therapy
超声介导的胰腺癌免疫调节的参数优化
  • 批准号:
    10375345
  • 财政年份:
    2020
  • 资助金额:
    $ 66.71万
  • 项目类别:
Parametric optimization of ultrasound-mediated immuno-modulation for pancreatic cancer therapy
超声介导的胰腺癌免疫调节的参数优化
  • 批准号:
    10092130
  • 财政年份:
    2020
  • 资助金额:
    $ 66.71万
  • 项目类别:
Treating Tumoral Hypoxia via Ultrasound-Guided Oxygen Release for Improving Radiation Therapy
通过超声引导释氧治疗肿瘤缺氧以改善放射治疗
  • 批准号:
    9978579
  • 财政年份:
    2018
  • 资助金额:
    $ 66.71万
  • 项目类别:
Treating Tumoral Hypoxia via Ultrasound-Guided Oxygen Release for Improving Radiation Therapy
通过超声引导释氧治疗肿瘤缺氧以改善放射治疗
  • 批准号:
    10402933
  • 财政年份:
    2018
  • 资助金额:
    $ 66.71万
  • 项目类别:
Treating Tumoral Hypoxia via Ultrasound-Guided Oxygen Release for Improving Radiation Therapy
通过超声引导释氧治疗肿瘤缺氧以改善放射治疗
  • 批准号:
    10632112
  • 财政年份:
    2018
  • 资助金额:
    $ 66.71万
  • 项目类别:
Treating Tumoral Hypoxia via Ultrasound-Guided Oxygen Release for Improving Radiation Therapy
通过超声引导释氧治疗肿瘤缺氧以改善放射治疗
  • 批准号:
    10163814
  • 财政年份:
    2018
  • 资助金额:
    $ 66.71万
  • 项目类别:
Acoustic Angiography Using Dual-Frequency and Ultrawideband CMUT Arrays
使用双频和超宽带 CMUT 阵列的声学血管造影
  • 批准号:
    9899252
  • 财政年份:
    2018
  • 资助金额:
    $ 66.71万
  • 项目类别:
High Frame Rate 3-D Super Resolution Ultrasound Microvascular Imaging
高帧率 3D 超分辨率超声微血管成像
  • 批准号:
    10478978
  • 财政年份:
    2017
  • 资助金额:
    $ 66.71万
  • 项目类别:
High Frame Rate 3-D Super Resolution Ultrasound Microvascular Imaging
高帧率 3D 超分辨率超声微血管成像
  • 批准号:
    9393119
  • 财政年份:
    2017
  • 资助金额:
    $ 66.71万
  • 项目类别:

相似海外基金

Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
  • 批准号:
    10078324
  • 财政年份:
    2023
  • 资助金额:
    $ 66.71万
  • 项目类别:
    BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
  • 批准号:
    2308300
  • 财政年份:
    2023
  • 资助金额:
    $ 66.71万
  • 项目类别:
    Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
  • 批准号:
    10033989
  • 财政年份:
    2023
  • 资助金额:
    $ 66.71万
  • 项目类别:
    Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
  • 批准号:
    23K16913
  • 财政年份:
    2023
  • 资助金额:
    $ 66.71万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
  • 批准号:
    10582051
  • 财政年份:
    2023
  • 资助金额:
    $ 66.71万
  • 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
  • 批准号:
    10602958
  • 财政年份:
    2023
  • 资助金额:
    $ 66.71万
  • 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
  • 批准号:
    2889921
  • 财政年份:
    2023
  • 资助金额:
    $ 66.71万
  • 项目类别:
    Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2343847
  • 财政年份:
    2023
  • 资助金额:
    $ 66.71万
  • 项目类别:
    Standard Grant
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2141275
  • 财政年份:
    2022
  • 资助金额:
    $ 66.71万
  • 项目类别:
    Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
  • 批准号:
    DGECR-2022-00019
  • 财政年份:
    2022
  • 资助金额:
    $ 66.71万
  • 项目类别:
    Discovery Launch Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了