Project 2
项目2
基本信息
- 批准号:8517246
- 负责人:
- 金额:$ 48.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAgeAlgorithmsAutomobile DrivingBehaviorBiologicalBiologyBlood GlucoseCarbonCell DeathCell physiologyCellsCellular StructuresCharacteristicsChemicalsCommunitiesComplexCongenital AbnormalityCoupledCouplingCuesDNA SequenceDataDependenceDevelopmentDiseaseEpigenetic ProcessEquationEthanolExhibitsExtracellular MatrixFungal GenomeGene ExpressionGene Expression ProfileGeneticGenetic TranscriptionGenotypeGlucoseGrowthHealthImageImage AnalysisIndividualLacZ GenesLibrariesMachine LearningMeasuresMechanicsMetabolicMethodologyMethodsMicrobial BiofilmsMicroscopyModelingMolecularMorphologyNoiseNucleic AcidsNucleotidesNutrientOnset of illnessOrganOrganismPathway interactionsPatternPhenotypePopulationPredispositionProcessPropertyRNARegulator GenesReporterSaccharomyces cerevisiaeSeriesSideSignal TransductionSourceSpatial DistributionStructureSurfaceSystemSystems BiologyTechnologyTimeTissuesTranscriptUpdateWaste ProductsWorkYeast Model SystemYeastsadvanced systemangiogenesisbasegenetic analysisgenome sequencinghuman diseaseintercellular communicationinterestmicroorganismmolecular scaleparticleprogramspromoterquorum sensingresearch studyresponsespatiotemporaltechnology developmenttraittumor growth
项目摘要
Project 2
Multiscale spatial and temporal dynamics of yeast colony development
Introduction.
In living systems, the characteristics of an individual, including traits such as susceptibility to disease or response to therapy, are determined by the coupling of processes that function at different scales of organization. For example, an individual's DNA sequence constrains the molecular networks that govern its cellular states and behaviors, which in turn determine the form and functions of multi-cellular structures. Microorganisms, including the yeast Saccharomyces cerevisiae, are traditionally used as models for investigating basic cellular processes at the unicellular level. However, unicellular organisms can form multi-cellular communities and differentiate into specialized structures to benefit the population. In some wild isolates of S. cerevisiae colonies (which start from a single cell and divide mitotically to become a structure of -10[8] cells) undergo a morphological transition characterized by complex patterns of "wrinkles" on the colony surface (Fig. 11).
This trait is called the "fluffy" phenotype. Work by others has shown that fluffy yeast colonies possess many properties of microbial biofilms and are thus directly relevant to health and human disease. In fluffy colonies, cells are connected by an extracellular matrix and internal hollow channels, which may help exchange nutrients and waste products. While there is some evidence that this morphological development involves nutrient driven cell state transitions, cell-cell signaling, quorum sensing and cell death, the exact molecules and in many cases the pathways are largely unknown.
The importance of the experimental system: This project seeks to understand how cells establish and maintain spatiotemporal patterns of cell state transitions to form multicellular structures. In our model (yeast "fluffy" colony formation) a single cell divides a undergoes a series of metabolic and functional transitions to reproducibly self organize into a complex structure of 10[8] cells. By advancing the conceptual, computational, and technical challeges below, we will develop a general methodology for analyzing complex traits that exhibit morphological phenotypes and can thus be applied to problems as diverse as physical birth defects during development or angiogenesis during tumor growth.
The challenges: ¿ Conceptual challenges: Among the most fundamental problems in biology is the genotype-phenotype question: given the complete genome sequence of an individual, can we predict the traits that the individual will exhibit? The newly emerging field of systems genetics seeks to solve the genotype phenotype problem by applying the principles and technologies of systems biology to genetic analysis. A major
limitation to this approach is that while the genotype side of the equation is data-rich (e.g., billions of nucleotides), traits are defined by an extremely limited set of values (e.g., a blood glucose level or age of disease onset).
Recent methods, including new machine learning algorithms that we have helped develop, have attempted to overcome this data sparsity problem by using comprehensive ("omic") data, such as RNA expression levels. Unfortunately, such data are most informative about the molecular networks (to which they are more proximal) and many steps removed from the traits of interest, which can result from processes that span multiple biological scales (molecular networks, cells, tissues, and organs). To advance systems genetics in a
way that is less confounded by this problem, we have chosen an organism and a trait, colony morphology in yeast, where imaging colony structure and spatial patterns of gene expression can be used to extract an extremely rich set of parameters that are directly relevant to the trait being studied.
项目2
酵母菌落发育的多尺度时空动态
介绍。
在生命系统中,个体的特征,包括对疾病的易感性或对治疗的反应等特征,是由在不同组织规模上发挥作用的过程的耦合决定的。例如,个体的 DNA 序列限制了控制其细胞状态和行为的分子网络,进而决定了多细胞结构的形式和功能。微生物,包括酿酒酵母,传统上被用作研究单细胞水平基本细胞过程的模型。然而,单细胞生物可以形成多细胞群落并分化成专门的结构以使种群受益。在一些野生分离的酿酒酵母菌落(从单个细胞开始,通过有丝分裂形成-10[8]个细胞的结构)经历形态转变,其特征是菌落表面出现复杂的“皱纹”图案(图11)。
这种特征被称为“蓬松”表型。其他人的研究表明,蓬松的酵母菌落具有微生物生物膜的许多特性,因此与健康和人类疾病直接相关。在蓬松的菌落中,细胞通过细胞外基质和内部中空通道连接,这可能有助于交换营养物质和废物。虽然有一些证据表明这种形态发育涉及营养驱动的细胞状态转变、细胞间信号传导、群体感应和细胞死亡,但确切的分子以及在许多情况下的途径在很大程度上是未知的。
实验系统的重要性:该项目旨在了解细胞如何建立和维持细胞状态转换的时空模式以形成多细胞结构。在我们的模型(酵母“蓬松”集落形成)中,单个细胞分裂并经历一系列代谢和功能转变,可重复地自组织成 10[8] 个细胞的复杂结构。通过推进下面的概念、计算和技术挑战,我们将开发一种通用方法来分析表现出形态表型的复杂特征,因此可以应用于发育过程中的物理出生缺陷或肿瘤生长过程中的血管生成等各种问题。
挑战: ¿ 概念挑战:生物学中最基本的问题之一是基因型-表型问题:给定个体的完整基因组序列,我们能否预测个体将表现出的特征?新兴的系统遗传学领域试图通过将系统生物学的原理和技术应用于遗传分析来解决基因型表型问题。一个专业
这种方法的局限性在于,虽然等式的基因型方面数据丰富(例如,数十亿个核苷酸),但性状是由一组极其有限的值(例如,血糖水平或发病年龄)定义的。
最近的方法,包括我们帮助开发的新机器学习算法,试图通过使用综合(“组学”)数据(例如 RNA 表达水平)来克服数据稀疏问题。不幸的是,这些数据对于分子网络(它们更接近)的信息最多,并且许多步骤与感兴趣的特征无关,这些特征可能是跨越多个生物尺度(分子网络、细胞、组织和器官)的过程产生的。推进系统遗传学
为了减少这个问题的困扰,我们选择了一种生物体和一种性状,即酵母菌落形态,其中成像菌落结构和基因表达的空间模式可用于提取与所研究的性状直接相关的极其丰富的参数集。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AIMEE M DUDLEY其他文献
AIMEE M DUDLEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AIMEE M DUDLEY', 18)}}的其他基金
Comprehensive approaches for understanding the functional impact of genetic variation and genetic complexity
了解遗传变异和遗传复杂性的功能影响的综合方法
- 批准号:
10021020 - 财政年份:2019
- 资助金额:
$ 48.91万 - 项目类别:
Comprehensive approaches for understanding the functional impact of genetic variation and genetic complexity
了解遗传变异和遗传复杂性的功能影响的综合方法
- 批准号:
10454145 - 财政年份:2019
- 资助金额:
$ 48.91万 - 项目类别:
Comprehensive approaches for understanding the functional impact of genetic variation and genetic complexity
了解遗传变异和遗传复杂性的功能影响的综合方法
- 批准号:
10225476 - 财政年份:2019
- 资助金额:
$ 48.91万 - 项目类别:
Computation and functional significance of multi-phenotype genetic interaction ma
多表型遗传相互作用的计算和功能意义
- 批准号:
8136295 - 财政年份:2010
- 资助金额:
$ 48.91万 - 项目类别:
Computation and functional significance of multi-phenotype genetic interaction ma
多表型遗传相互作用的计算和功能意义
- 批准号:
7987561 - 财政年份:2010
- 资助金额:
$ 48.91万 - 项目类别:
Computation and functional significance of multi-phenotype genetic interaction ma
多表型遗传相互作用的计算和功能意义
- 批准号:
8535271 - 财政年份:2010
- 资助金额:
$ 48.91万 - 项目类别:
Computation and functional significance of multi-phenotype genetic interaction ma
多表型遗传相互作用的计算和功能意义
- 批准号:
8323922 - 财政年份:2010
- 资助金额:
$ 48.91万 - 项目类别:
POST-TRANSCRIPTIONAL REGULATORY COMPLEX DYNAMICS IN YEAST
酵母转录后调控复杂动态
- 批准号:
7723728 - 财政年份:2008
- 资助金额:
$ 48.91万 - 项目类别:
Temporal and spatial effects on expression and function
对表达和功能的时间和空间影响
- 批准号:
6788162 - 财政年份:2003
- 资助金额:
$ 48.91万 - 项目类别:
Temporal and spatial effects on expression and function
对表达和功能的时间和空间影响
- 批准号:
7418353 - 财政年份:2003
- 资助金额:
$ 48.91万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政策的情绪动态
- 批准号:
10108433 - 财政年份:2024
- 资助金额:
$ 48.91万 - 项目类别:
EU-Funded
The role of dietary and blood proteins in the prevention and development of major age-related diseases
膳食和血液蛋白在预防和发展主要与年龄相关的疾病中的作用
- 批准号:
MR/X032809/1 - 财政年份:2024
- 资助金额:
$ 48.91万 - 项目类别:
Fellowship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 48.91万 - 项目类别:
Fellowship
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 48.91万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 48.91万 - 项目类别:
Continuing Grant
Doctoral Dissertation Research: Effects of age of acquisition in emerging sign languages
博士论文研究:新兴手语习得年龄的影响
- 批准号:
2335955 - 财政年份:2024
- 资助金额:
$ 48.91万 - 项目类别:
Standard Grant
The economics of (mis)information in the age of social media
社交媒体时代(错误)信息的经济学
- 批准号:
DP240103257 - 财政年份:2024
- 资助金额:
$ 48.91万 - 项目类别:
Discovery Projects
How age & sex impact the transcriptional control of mammalian muscle growth
你多大
- 批准号:
DP240100408 - 财政年份:2024
- 资助金额:
$ 48.91万 - 项目类别:
Discovery Projects
Supporting teachers and teaching in the age of Artificial Intelligence
支持人工智能时代的教师和教学
- 批准号:
DP240100111 - 财政年份:2024
- 资助金额:
$ 48.91万 - 项目类别:
Discovery Projects
Enhancing Wahkohtowin (Kinship beyond the immediate family) Community-based models of care to reach and support Indigenous and racialized women of reproductive age and pregnant women in Canada for the prevention of congenital syphilis
加强 Wahkohtowin(直系亲属以外的亲属关系)以社区为基础的护理模式,以接触和支持加拿大的土著和种族育龄妇女以及孕妇,预防先天梅毒
- 批准号:
502786 - 财政年份:2024
- 资助金额:
$ 48.91万 - 项目类别:
Directed Grant














{{item.name}}会员




