Structural studies of bacteriophage T4 and their potential medical applications
噬菌体T4的结构研究及其潜在的医学应用
基本信息
- 批准号:8197126
- 负责人:
- 金额:$ 59.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-12-15 至 2014-11-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAntibioticsAntigensBacteriaBacteriophage T4BacteriophagesBindingBiochemicalBiologicalBiological ModelsCapsidCapsid ProteinsCell WallCellsComplexContractsCryoelectron MicroscopyCrystallographyDNA PackagingDataDistalElectron MicroscopyElectronsFiberGene DeliveryGenesHeadInfectionKnowledgeLife Cycle StagesLipopolysaccharidesMapsMedicalMicroscopicMolecular BiologyMotorMutationNeckProlateProtein ChemistryProteinsRecombinantsResearchResistanceResolutionSamplingStagingStructureTailTechniquesTubeViralVirusWorkexperiencegene therapyimprovedmacromolecular assemblymutantparticlepathogenprotein protein interactionpublic health relevancereconstructiontoolvaccine deliveryvaccine development
项目摘要
DESCRIPTION (provided by applicant): Most bacterial viruses ("bacteriophages" or just "phages") are highly efficient in their ability to infect their often very specific bacterial hosts. In general, only one or a few viral particles are necessary to successfully infect one bacterium. As a consequence there has been a long, unfulfilled hope that phages could be used as antibiotics. The need for alternative antibiotics is becoming ever more acute as common bacterial pathogens are developing resistant mutations, making it urgent to develop alternatives such as phage therapy. In addition, recombinant phages have been suggested as a means for gene therapy and as potential antigens for development of vaccines. Bacteriophage T4 has been a model system to study virus structure and function, having advanced biochemical principles of the assembly of biological complexes and protein-protein interactions. We have extensive experience in both structural and functional studies of phage T4. We now wish to expand this knowledge and make it available for potential medical applications. The plan is to analyze the structure and assembly of the capsid (Specific Aim 1), the DNA packaging machine (Specific Aim 2), the tail assembly (Specific Aim 3), assembly of the tail with head (Specific Aim 4) and the recognition of the host by the phage fibers (Specific Aim 5). Our primary tools will be molecular biology, protein chemistry, crystallography and electron microscopy. Molecular biology studies will produce pure samples in sufficient quantity for structural and functional studies. Crystallographic studies will be of protein components, providing three-dimensional information at near atomic resolution. Cryo-electron microscopic reconstructions will provide three-dimensional data on the organization of the protein components within the virus. Combining these techniques will generate "pseudo-atomic" resolution structures of the virus at different stages of its life cycle.
PUBLIC HEALTH RELEVANCE: We plan to extend the structural and functional knowledge of bacteriophage T4, which would advance basic knowledge of protein-protein interactions and macromolecular assembly. At this stage we do not directly plan work on medical applications, yet T4 is perhaps the most thoroughly studied phage and, thus, is the most likely candidate for developing its potential as an antibiotic, as a vaccine, and for the delivery of genes to targeted cells for gene therapy. The research will center on the structure of the phage tail and fibers relevant for host recognition, the mechanism of the DNA packaging motor relevant for gene delivery and therapy, and the structure of the capsid relevant for vaccine development.
描述(由申请人提供):大多数细菌病毒(“噬菌体”或简称“噬菌体”)在感染其通常非常特异的细菌宿主的能力方面是高效的。一般来说,只有一个或几个病毒颗粒是必要的成功感染一个细菌。因此,长期以来一直存在着一个未实现的希望,即β-内酰胺酶可以用作抗生素。对替代抗生素的需求变得越来越迫切,因为常见的细菌病原体正在产生耐药性突变,迫切需要开发噬菌体疗法等替代药物。此外,已建议将重组人β-内酰胺酶作为基因治疗的手段和作为疫苗开发的潜在抗原。 噬菌体T4是研究病毒结构和功能的模型系统,具有生物复合物组装和蛋白质-蛋白质相互作用的先进生物化学原理。我们在噬菌体T4的结构和功能研究方面都有丰富的经验。我们现在希望扩展这些知识,并使其可用于潜在的医学应用。 计划分析衣壳的结构和组装(特异性目的1)、DNA包装机(特异性目的2)、尾部组装(特异性目的3)、尾部与头部的组装(特异性目的4)以及噬菌体纤维对宿主的识别(特异性目的5)。我们的主要工具将是分子生物学,蛋白质化学,晶体学和电子显微镜。分子生物学研究将产生足够数量的纯样品用于结构和功能研究。晶体学研究将是蛋白质成分,提供近原子分辨率的三维信息。冷冻电子显微镜重建将提供病毒内蛋白质组分组织的三维数据。结合这些技术将产生病毒在其生命周期的不同阶段的“伪原子”分辨率结构。
公共卫生相关性:我们计划扩展噬菌体T4的结构和功能知识,这将推进蛋白质-蛋白质相互作用和大分子组装的基础知识。在这个阶段,我们没有直接计划在医学应用上的工作,但T4可能是研究最彻底的噬菌体,因此,是最有可能开发其作为抗生素,疫苗和基因治疗靶细胞的基因传递潜力的候选者。该研究将集中在与宿主识别相关的噬菌体尾部和纤维的结构,与基因递送和治疗相关的DNA包装马达的机制,以及与疫苗开发相关的衣壳结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL G ROSSMANN其他文献
MICHAEL G ROSSMANN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL G ROSSMANN', 18)}}的其他基金
Structural studies of bacteriophage T4 and their potential medical applications
噬菌体T4的结构研究及其潜在的医学应用
- 批准号:
8005499 - 财政年份:2009
- 资助金额:
$ 59.83万 - 项目类别:
Structural studies of bacteriophage T4 and their potential medical applications
噬菌体T4的结构研究及其潜在的医学应用
- 批准号:
8959762 - 财政年份:2009
- 资助金额:
$ 59.83万 - 项目类别:
Structural studies of bacteriophage T4 and their potential medical applications
噬菌体T4的结构研究及其潜在的医学应用
- 批准号:
7820829 - 财政年份:2009
- 资助金额:
$ 59.83万 - 项目类别:
Structural studies of bacteriophage T4 and their potential medical applications
噬菌体T4的结构研究及其潜在的医学应用
- 批准号:
8390492 - 财政年份:2009
- 资助金额:
$ 59.83万 - 项目类别:
相似海外基金
Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
- 批准号:
2902098 - 财政年份:2024
- 资助金额:
$ 59.83万 - 项目类别:
Studentship
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
- 批准号:
EP/Z533026/1 - 财政年份:2024
- 资助金额:
$ 59.83万 - 项目类别:
Research Grant
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
- 批准号:
BB/Y004035/1 - 财政年份:2024
- 资助金额:
$ 59.83万 - 项目类别:
Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
- 批准号:
FT230100468 - 财政年份:2024
- 资助金额:
$ 59.83万 - 项目类别:
ARC Future Fellowships
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 59.83万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 59.83万 - 项目类别:
Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
- 批准号:
MR/Y033809/1 - 财政年份:2024
- 资助金额:
$ 59.83万 - 项目类别:
Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
- 批准号:
494853 - 财政年份:2023
- 资助金额:
$ 59.83万 - 项目类别:
Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
- 批准号:
2884862 - 财政年份:2023
- 资助金额:
$ 59.83万 - 项目类别:
Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
- 批准号:
2904356 - 财政年份:2023
- 资助金额:
$ 59.83万 - 项目类别:
Studentship