Synthesis and properties of a bacterial bioadhesive

细菌生物粘附剂的合成及性能

基本信息

  • 批准号:
    8344340
  • 负责人:
  • 金额:
    $ 39.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-01 至 2016-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Bacteria often utilize polysaccharides as adhesive structures to attach to surfaces, to form biofilms, and to infect host cells. In addition, polysaccharides hold strong promise as biological adhesives in many areas of human activity, including as dental and surgical adhesives. The bacterium Caulobacter crescentus synthesizes a polysaccharide called the holdfast that exhibits and impressive adhesive force. Contrary to most commercial adhesives, holdfasts adhere tightly to a variety of surfaces in both freshwater and marine environments. Such a property is critical for medical applications in the human body. The general goal of this research is to use a multidisciplinary approach ranging from genetics to biophysics to study the chemical and biophysical basis for holdfast properties and to understand how holdfast properties are modulated by deacetylation and inhibition by extracellular DNA (eDNA). The project has three specific aims. The first aim is to determine the biophysical basis for holdfast adhesiveness. Atomic force microscopy (AFM) will be used to systematically study the influence of surface roughness, shear stress, surface composition, ionic strength, and pH on holdfast adhesion in order to provide a better understanding of the mechanism of holdfast adhesion and adhesion control. The second aim is to determine the role of deacetylation in holdfast anchoring and adhesive properties. A holdfast polysaccharide deacetylase mutant causes the release of non-adherent holdfast in solution. The composition and structure of the holdfast polysaccharide will be determined from normal and deacetylase mutant cells. AFM force spectroscopy and high-resolution fluorescence microscopy will be used to determine the role of deacetylation on holdfast adhesiveness and cohesiveness. Biochemical experiments will be used to study the role of deacetylation in anchoring the holdfast to the cell. Finally, similar studies of the holdfast of marine species will provide better biomaterials for potential applications in the saline environment of the human body. The third aim is to determine the biological basis for the recently discovered mechanism of eDNA inhibition of holdfast adherence. The role of a toxin-antitoxin system in the production of eDNA by programmed cell death will be studied and the basis for the sequence specificity of holdfast inhibition will be determined. AFM indentation studies and simultaneous AFM imaging and Raman scattering spectroscopy of holdfasts bound or not to eDNA will be used to determine how specific DNA alters the structure and structural properties of the holdfast. Results from the proposed studies will provide insight into the basic mechanisms for the impressive adhesive properties of the holdfast and modulation of these properties, paving the way for the future development of the holdfast as a biological adhesive. In addition, results of these studies will provide insights into the mechanism of polysaccharide adhesiveness in general, as well as for strategies to inhibit polysaccharide adhesion, for example during infection by pathogens. PUBLIC HEALTH RELEVANCE: Bacteria often utilize polysaccharides as adhesive structures to attach to surfaces, to form biofilms, and to infect host cells, and these polysaccharides hold strong promise as biological adhesives in many areas of human activity, including as dental and surgical adhesives. We will study one of the strongest known biological adhesives, the holdfast polysaccharide of Caulobacter crescentus by investigating the chemical and the biophysical basis for holdfast properties and the mechanism of action of a specific inhibitor of holdfast adhesiveness. These studies will provide data essential to the design of strategies to use polysaccharides in various applications, as well as strategies to inhibit polysaccharide adhesion during infection by bacterial pathogens.
描述(由申请人提供):细菌通常利用多糖作为粘附结构附着于表面,形成生物膜,并感染宿主细胞。此外,多糖在人类活动的许多领域中作为生物粘合剂,包括作为牙科和外科粘合剂,具有很强的前景。新月柄杆菌能合成一种叫做固着剂的多糖,这种多糖具有令人印象深刻的粘附力。与大多数商业粘合剂相反,固着剂在淡水和海洋环境中紧密地粘附到各种表面。这种性质对于人体的医学应用至关重要。本研究的总体目标是使用从遗传学到生物物理学的多学科方法来研究holdfast属性的化学和生物物理基础,并了解holdfast属性是如何通过脱乙酰化和细胞外DNA(eDNA)的抑制来调节的。该项目有三个具体目标。第一个目的是确定holdfast的生物物理基础。原子力显微镜(AFM)将被用来系统地研究表面粗糙度,剪切应力,表面成分,离子强度,和pH值对固着附着力的影响,以提供固着附着力和附着力控制的机制更好地理解。第二个目的是确定脱乙酰化在固着锚定和粘合性能中的作用。固着多糖脱乙酰基酶突变体引起溶液中非粘附固着物的释放。将从正常和脱乙酰酶突变细胞中确定固着多糖的组成和结构。AFM力谱和高分辨率荧光显微镜将被用来确定脱乙酰化的作用上的固着力和凝聚力。生物化学实验将用于研究脱乙酰化在将固着物锚定到细胞中的作用。最后,对海洋物种的固着性的类似研究将为人体盐水环境中的潜在应用提供更好的生物材料。第三个目的是确定最近发现的eDNA抑制固着粘附机制的生物学基础。将研究毒素-抗毒素系统在程序性细胞死亡产生eDNA中的作用,并确定固着抑制的序列特异性的基础。AFM压痕研究和同步AFM成像和拉曼散射光谱的固着结合或不结合到eDNA将被用来确定如何特定的DNA改变固着的结构和结构特性。从拟议的研究结果将提供深入了解的基本机制,令人印象深刻的粘合性能的固着剂和调制这些属性,铺平了道路的固着剂作为一种生物粘合剂的未来发展。此外,这些研究的结果将提供以下见解: 多糖粘附的一般机制,以及抑制多糖粘附的策略,例如在病原体感染期间。 公共卫生相关性:细菌通常利用多糖作为粘附结构来附着于表面,形成生物膜,并感染宿主细胞,并且这些多糖在人类活动的许多领域中作为生物粘合剂具有很强的前景,包括作为牙科和外科粘合剂。我们将研究已知的最强的生物粘合剂之一,通过调查的化学和生物物理基础的固着特性和固着性的抑制剂的作用机制的固着性多糖的新月柄杆菌。这些研究将提供必要的数据,在各种应用中使用多糖的策略的设计,以及在细菌病原体感染过程中抑制多糖粘附的策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YVES V BRUN其他文献

YVES V BRUN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YVES V BRUN', 18)}}的其他基金

Bacterial Subcellular Organization and its Impact on Growth, Development, Aging, and Surface Adhesion
细菌亚细胞组织及其对生长、发育、衰老和表面粘附的影响
  • 批准号:
    9276966
  • 财政年份:
    2017
  • 资助金额:
    $ 39.67万
  • 项目类别:
Dynamics of bacterial peptidoglycan synthesis
细菌肽聚糖合成动力学
  • 批准号:
    9197654
  • 财政年份:
    2015
  • 资助金额:
    $ 39.67万
  • 项目类别:
Dynamics of bacterial peptidoglycan synthesis
细菌肽聚糖合成动力学
  • 批准号:
    8809735
  • 财政年份:
    2015
  • 资助金额:
    $ 39.67万
  • 项目类别:
2014 Bacterial Cell Surfaces Gordon Research Conference
2014年细菌细胞表面戈登研究会议
  • 批准号:
    8785778
  • 财政年份:
    2014
  • 资助金额:
    $ 39.67万
  • 项目类别:
Synthesis and properties of a bacterial bioadhesive
细菌生物粘附剂的合成及性能
  • 批准号:
    8518406
  • 财政年份:
    2012
  • 资助金额:
    $ 39.67万
  • 项目类别:
Synthesis and properties of a bacterial bioadhesive
细菌生物粘附剂的合成及性能
  • 批准号:
    8656372
  • 财政年份:
    2012
  • 资助金额:
    $ 39.67万
  • 项目类别:
Mechanism of Caulobacter adhesion
柄杆菌粘附机制
  • 批准号:
    8123689
  • 财政年份:
    2010
  • 资助金额:
    $ 39.67万
  • 项目类别:
Mechanism of Caulobacter adhesion
柄杆菌粘附机制
  • 批准号:
    7212666
  • 财政年份:
    2007
  • 资助金额:
    $ 39.67万
  • 项目类别:
Mechanism of Caulobacter adhesion
柄杆菌粘附机制
  • 批准号:
    7765561
  • 财政年份:
    2007
  • 资助金额:
    $ 39.67万
  • 项目类别:
Mechanism of Caulobacter adhesion
柄杆菌粘附机制
  • 批准号:
    7340743
  • 财政年份:
    2007
  • 资助金额:
    $ 39.67万
  • 项目类别:

相似海外基金

How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y004841/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
  • 批准号:
    BB/Y001427/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y005414/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
  • 批准号:
    10669829
  • 财政年份:
    2023
  • 资助金额:
    $ 39.67万
  • 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
  • 批准号:
    10587090
  • 财政年份:
    2023
  • 资助金额:
    $ 39.67万
  • 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
  • 批准号:
    10821599
  • 财政年份:
    2023
  • 资助金额:
    $ 39.67万
  • 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
  • 批准号:
    10841832
  • 财政年份:
    2023
  • 资助金额:
    $ 39.67万
  • 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
  • 批准号:
    10532480
  • 财政年份:
    2022
  • 资助金额:
    $ 39.67万
  • 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
  • 批准号:
    10741261
  • 财政年份:
    2022
  • 资助金额:
    $ 39.67万
  • 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
  • 批准号:
    10674894
  • 财政年份:
    2022
  • 资助金额:
    $ 39.67万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了