MPS1 kinase in the Spindle Pole Cycle

纺锤体周期中的 MPS1 激酶

基本信息

  • 批准号:
    8238007
  • 负责人:
  • 金额:
    $ 36.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-08-01 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Centrosomes are the major microtubule organizing centers (MTOC) in cells. Importantly, as poles of the mitotic spindle, centrosomes nucleate the microtubules responsible for proper chromosome segregation to the progeny cells. Failure in centrosome duplication or function leads to genomic instability and contributes to cellular transformation. Therefore, a detailed mechanistic understanding of duplication is critical in assessing how errors in this process result in centrosomal defects and potentially lead to a disease state. Using the genetically tractable budding yeast, Saccharomyces cerevisiae, in which the centrosome, known as the spindle pole body (SPB), is well defined, we propose to investigate the assembly mechanisms that produce new centrosomes, how phosphorylation regulates events at the centrosome, and whether specific regulatory phosphorylations are conserved among eukaryotes. We, and others, have previously shown that protein phosphorylation plays a significant role in the assembly and function of centrosomes. Recently, we isolated intact yeast SPBs and subjected them to mass spectrometric analysis, yielding a phosphoproteome that includes 297 mapped phosphorylation sites across 17 of the 18 core SPB components. We will use this novel resource to discover which phosphorylation events are important for SPB assembly and microtubule nucleation. In the first aim, we will test a model for the initiation of yeast SPB duplication based on the hypothesis that phosphorylation of the conserved SPB component Sfi1 regulates both its step-wise addition to the existing SPB and its ability to recruit SPB components that form the nascent SPB. In addition, we will test whether Sfi1 and its binding partner Cdc31 (centrin) alone are sufficient for initiation of SPB assembly. The second aim focuses on the expansion of SPBs in mitotically-arrested cells, as this expansion is similar to centrosome maturation. In both cases, components that are conserved between SPBs and centrosomes are added to the structures, and centrosome microtubule nucleation capacities increase. We will determine which SPB components, phosphorylation events, and regulators contribute to the expansion of SPBs in cdc20- depleted cells. This work will reveal core SPB assembly mechanisms and their regulation. The third and final aim focuses on the role of phosphorylation in the assembly and function of the 3-tubulin complex, consisting of three conserved proteins (Tub4, Spc97, Spc98) responsible for microtubule nucleation. Another important protein, Spc110, attaches the 3-tubulin complex to the SPB, and we will determine whether Spc110 phosphorylation is critical for 3-tubulin complex assembly and/or microtubule nucleation. Finally, we will ask whether conserved residues within the human 3-tubulin complex are also phosphorylated and function in a manner similar to those in the yeast 3-tubulin complex. In summary, our completed yeast SPB phosphoproteome allows us to move beyond the mapping of specific phosphorylation sites to the more complex questions of how phospho-regulation acts in centrosome assembly, structure and function. PUBLIC HEALTH RELEVANCE: The aim of this work is to understand processes regulating the assembly and function of the yeast centrosome. The centrosome forms the microtubules in the mitotic spindle. As such, centrosome duplication is a key cell cycle event producing the two poles of the spindle. Defects in centrosome structure and number are commonly observed in tumor cells, and contribute to the genetic instability in these cells. In order to understand this aspect of tumor cells, a complete understanding of centrosome assembly is required and our work in yeast will contribute to that understanding.
描述(申请人提供):中心体是细胞中主要的微管组织中心(MTOC)。重要的是,中心体作为有丝分裂纺锤体的极,使负责将染色体正确分离到后代细胞的微管成核。中心体复制或功能的失败会导致基因组的不稳定,并有助于细胞转化。因此,对复制的详细机制理解对于评估这一过程中的错误如何导致中心体缺陷并可能导致疾病状态至关重要。利用遗传上易驯化的芽生酵母,酿酒酵母中的中心体,即纺锤体极体(SPB)被很好地定义,我们建议研究产生新的中心体的组装机制,磷酸化如何调节中心体上的事件,以及特定的调节磷酸化在真核生物中是否保守。我们和其他人之前已经证明,蛋白质磷酸化在中心体的组装和功能中发挥着重要作用。最近,我们分离了完整的酵母SPB,并对它们进行了质谱分析,得到了一个磷酸蛋白质组,该蛋白质组包括18个核心SPB组分中的17个定位的磷酸化位点。我们将利用这一新的资源来发现哪些磷酸化事件对SPB组装和微管成核是重要的。在第一个目标中,我们将测试一个启动酵母SPB复制的模型,该模型基于这样的假设,即保守的SPB组分Sfi1的磷酸化既调节其与现有SPB的逐步添加,也调节其招募形成新生SPB的SPB组分的能力。此外,我们将测试Sfi1及其结合伙伴CDc31(中心素)是否足以启动SPB组装。第二个目标集中在有丝分裂停滞细胞中SPBS的扩张,因为这种扩张类似于中心体成熟。在这两种情况下,SPBS和中心体之间保守的成分被添加到结构中,中心体微管成核能力增加。我们将确定哪些SPB组分、磷酸化事件和调节因子有助于CDC20耗竭细胞中SPBS的扩展。这项工作将揭示SPB的核心组装机制及其调控。第三个也是最终目标集中在磷酸化在3-微管蛋白复合体的组装和功能中的作用,3-微管蛋白复合体由三个负责微管成核的保守蛋白(Tub4、Spc97和Spc98)组成。另一种重要的蛋白质Spc110将3-微管蛋白复合体连接到SPB上,我们将确定Spc110磷酸化是否对3-微管蛋白复合体的组装和/或微管成核至关重要。最后,我们将询问人类3-微管蛋白复合体中的保守残基是否也被磷酸化,并以类似于酵母3-微管蛋白复合体的方式发挥作用。总而言之,我们完整的酵母SPB磷酸蛋白质组使我们能够超越特定磷酸化位点的图谱,进入更复杂的问题,即磷酸化调节如何在中心体组装、结构和功能中发挥作用。 与公众健康相关:这项工作的目的是了解调控酵母中心体组装和功能的过程。中心体形成有丝分裂纺锤体中的微管。因此,中心体复制是产生纺锤体两极的关键细胞周期事件。中心体结构和数目的缺陷在肿瘤细胞中普遍存在,并导致这些细胞的遗传不稳定性。为了了解肿瘤细胞的这一方面,需要对中心体组装有一个完整的了解,我们在酵母中的工作将有助于这一理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARK WINEY其他文献

MARK WINEY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARK WINEY', 18)}}的其他基金

MIPS (Microtubule Inner Proteins) function in cilia and basal bodies
MIPS(微管内部蛋白)在纤毛和基底体中发挥作用
  • 批准号:
    10655224
  • 财政年份:
    2018
  • 资助金额:
    $ 36.5万
  • 项目类别:
EFHC gene function in ciliary axomenes.
EFHC 基因在睫状轴丝中的功能。
  • 批准号:
    9900028
  • 财政年份:
    2018
  • 资助金额:
    $ 36.5万
  • 项目类别:
EFHC gene function in ciliary axomenes.
EFHC 基因在睫状轴丝中的功能。
  • 批准号:
    10386664
  • 财政年份:
    2018
  • 资助金额:
    $ 36.5万
  • 项目类别:
The Yeast Centrosome - Structure Assembly & Function
酵母中心体 - 结构组装
  • 批准号:
    8668219
  • 财政年份:
    2014
  • 资助金额:
    $ 36.5万
  • 项目类别:
The Yeast Centrosome - Structure Assembly & Function
酵母中心体 - 结构组装
  • 批准号:
    9486545
  • 财政年份:
    2014
  • 资助金额:
    $ 36.5万
  • 项目类别:
The Yeast Centrosome - Structure Assembly & Function
酵母中心体 - 结构组装
  • 批准号:
    9073389
  • 财政年份:
    2014
  • 资助金额:
    $ 36.5万
  • 项目类别:
Molecular Interactions and Dynamics of the Yeast SPB Core Architecture
酵母 SPB 核心架构的分子相互作用和动力学
  • 批准号:
    8668223
  • 财政年份:
    2014
  • 资助金额:
    $ 36.5万
  • 项目类别:
Acquisition of a Transmission Electron Microscope
购买透射电子显微镜
  • 批准号:
    8246562
  • 财政年份:
    2012
  • 资助金额:
    $ 36.5万
  • 项目类别:
SPINDLE POLE BODY PHOSPHOPROTEOME
纺锤体磷酸化蛋白质组
  • 批准号:
    8365899
  • 财政年份:
    2011
  • 资助金额:
    $ 36.5万
  • 项目类别:
TETRAHYMENA BASAL BODY DUPLICATION
四膜虫基础体复制
  • 批准号:
    8362544
  • 财政年份:
    2011
  • 资助金额:
    $ 36.5万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 36.5万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 36.5万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了