Structural and Biochemical Studies of LpxC Inhibition
LpxC 抑制的结构和生化研究
基本信息
- 批准号:8239580
- 负责人:
- 金额:$ 38.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-06-15 至 2014-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcinetobacterAcinetobacter calcoaceticusAnabolismAntibioticsAreaBacteriaBindingBiochemicalBiological AssayBurkholderia cepaciaCatalysisCause of DeathCell Culture TechniquesChemicalsCommitComplexDevelopmentDiffusionEndotoxinsEnzyme Inhibitor DrugsEnzyme InhibitorsEnzymesEscherichia coliEvaluationGenesGlucosamineGoalsGram-Negative BacteriaGrowthHalf-LifeHumanIndividualInfectionInvestigationLeadLifeLipid ALipopolysaccharidesMembraneModelingMolecularMolecular ConformationMorbidity - disease rateMulti-Drug ResistanceMusN-acetylglucosamine deacetylaseOrganismOrthologous GenePathway interactionsProcessPropertyProteinsPseudomonasPseudomonas aeruginosaResearchResistanceSalmonellaSeptic ShockShigellaSpecificityTestingThermolysinTimeToxic effectUridineUridine DiphosphateVariantYersiniaZincabstractingantimicrobialbactericidebasecystic fibrosis patientsdesigneffective therapyflexibilityimprovedinhibitor/antagonistinsightkillingsmetalloenzymemonolayermortalitynext generationnovelpathogenpublic health relevancescaffold
项目摘要
Project Summary/Abstract
Lipid A (endotoxin) is a glucosamine-based saccharolipid that constitutes the outer monolayer of the outer
membrane of Gram-negative bacteria; it is also the active component of lipopolysaccharide that causes life-
threatening Gram-negative septic shock. Lipid A biosynthesis is an essential pathway conserved in virtually all
Gram-negative organisms. The committed step of lipid A biosynthesis is catalyzed by UDP-3-O-(acyl)-N-
acetylglucosamine deacetylase (LpxC). Because LpxC is an essential enzyme in lipid A biosynthesis and does
not share sequence or structural homology with any known mammalian protein, it is an excellent target for the
design of novel antibiotics. Indeed, several potent LpxC inhibitors have been discovered that display various
degrees of antibiotic activity. Some of the recently discovered compounds also show time-dependent LpxC
inhibition, a property that is highly desirable for an antibiotic because of the long half-life of the enzyme/inhibitor
complex.
A significant degree of local structural variation is likely to exist among different LpxC orthologs. Many of
the potent inhibitors of Escherichia coli LpxC are relatively inactive against divergent LpxC enzymes, especially
that from Pseudomonas aeruginosa, the leading cause of death in cystic fibrosis patients. CHIR-090, the most
potent LpxC inhibitor discovered to date, is ineffective against multidrug-resistant Gram-negative pathogens
such as Acinetobacter calcoaceticus and Burkholderia cepacia. This unusual inhibitor specificity and the lack of
structural information on various LpxC/inhibitor complexes together severely hinder further optimization of
existing LpxC inhibitors.
The overall goal of this proposal is (1) to understand the largely unknown molecular features of LpxC
underlying inhibitor specificity and time-dependent inhibition and (2) to utilize this information to improve both
the potency and spectrum of inhibition for the next generation of LpxC-targeting antibiotics. This goal will be
achieved by detailed structural and biochemical studies of divergent LpxC orthologs in complex with
representative LpxC inhibitors, and by design, synthesis and evaluation of novel compounds based on
structural insights. Project Narrative (Public Health Relevance Statement)
The lack of effective treatment for multidrug-resistant Gram-negative pathogens, including strains of
Pseudomonas or Acinetobacter that are resistant to all clinically available antibiotics, underscores the pressing
need for antibiotics with novel mechanisms of action.
Our proposed structural and biochemical studies of LpxC, an essential enzyme in lipid A biosynthesis and
a novel antibiotic target of Gram-negative bacteria, will reveal the molecular basis underlying inhibitor
specificity and time-dependent inhibition. Our studies have already benefited and will continue to facilitate the
development of potent LpxC-targeting antibiotics against a broad spectrum of Gram-negative pathogens.
项目摘要/摘要
脂A(内毒素)是一种以氨基葡萄糖为基础的糖脂,它构成了外层的单层
革兰氏阴性细菌的膜;它也是导致生命的脂多糖的活性成分-
有革兰氏阴性败血症休克的危险。类脂A的生物合成是几乎所有
革兰氏阴性菌。脂质A生物合成的关键步骤是由UDP-3-O-(酰基)-N-
乙酰氨基葡萄糖脱乙酰酶(LpxC)。因为LpxC是脂质A生物合成的关键酶,而且
它与任何已知的哺乳动物蛋白质没有相同的序列或结构同源性,是研究
新型抗生素的设计。事实上,已经发现了几种有效的LpxC抑制剂,它们表现出不同的
抗生素活性的程度。最近发现的一些化合物也显示出时间依赖的LpxC
抑制,由于酶/抑制剂的半衰期很长,这是抗生素非常可取的特性
很复杂。
不同的LpxC同源基因之间可能存在很大程度的局部结构差异。许多.
大肠杆菌LpxC的有效抑制剂对不同的LpxC酶相对无效,尤其是
来自铜绿假单胞菌,囊性纤维化患者的主要死亡原因。Chir-090,最多
到目前为止发现的有效的LpxC抑制剂,对多重耐药的革兰氏阴性病原体无效
如醋酸钙不动杆菌和洋葱伯克霍尔德氏菌。这种不同寻常的抑制剂专一性和缺乏
各种LpxC/抑制剂复合体的结构信息严重阻碍了进一步的优化
现有的LpxC抑制剂。
这项提议的总体目标是:(1)了解LpxC的分子特征
潜在的抑制特异性和时间依赖性抑制,以及(2)利用这一信息来改善两者
下一代LpxC靶向抗生素的抑制效力和谱。这个目标将是
通过对发散的LpxC同源物的详细结构和生化研究实现的
具有代表性的LpxC抑制剂,并通过设计、合成和评价基于
结构洞察力。项目说明(与公共卫生相关的声明)
缺乏对多重耐药革兰氏阴性病原体的有效治疗,包括菌株
对所有临床上可用的抗生素都有耐药性的假单胞菌或不动杆菌,突显了这种紧迫性
需要具有新作用机制的抗生素。
我们对LpxC的结构和生化研究提出了建议,LpxC是脂质A生物合成和生物合成的关键酶
革兰氏阴性菌的一个新的抗生素靶点,将揭示抑制物的分子基础
特异性和时间依赖性抑制。我们的研究已经受益,并将继续促进
开发有效的LpxC靶向抗生素来对抗广谱的革兰氏阴性病原体。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanism and inhibition of LpxC: an essential zinc-dependent deacetylase of bacterial lipid A synthesis.
- DOI:10.2174/138920108783497668
- 发表时间:2008-01
- 期刊:
- 影响因子:2.8
- 作者:A. Barb;P. Zhou
- 通讯作者:A. Barb;P. Zhou
Drug design from the cryptic inhibitor envelope.
- DOI:10.1038/ncomms10638
- 发表时间:2016-02-25
- 期刊:
- 影响因子:16.6
- 作者:Lee CJ;Liang X;Wu Q;Najeeb J;Zhao J;Gopalaswamy R;Titecat M;Sebbane F;Lemaitre N;Toone EJ;Zhou P
- 通讯作者:Zhou P
High resolution 4-D spectroscopy with sparse concentric shell sampling and FFT-CLEAN.
- DOI:10.1007/s10858-008-9275-x
- 发表时间:2008-12
- 期刊:
- 影响因子:2.7
- 作者:Coggins BE;Zhou P
- 通讯作者:Zhou P
Rapid assignment of protein side chain resonances using projection-reconstruction of (4,3)D HC(CCO)NH and intra-HC(C)NH experiments.
使用 (4,3)D HC(CCO)NH 和内部 HC(C)NH 实验的投影重建快速分配蛋白质侧链共振。
- DOI:10.1016/j.jmr.2005.03.014
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Jiang,Ling;Coggins,BrianE;Zhou,Pei
- 通讯作者:Zhou,Pei
A Scalable Synthesis of the Difluoromethyl-allo-threonyl Hydroxamate-Based LpxC Inhibitor LPC-058.
- DOI:10.1021/acs.joc.6b00589
- 发表时间:2016-05-20
- 期刊:
- 影响因子:3.6
- 作者:Liang, Xiaofei;Gopalaswamy, Ramesh;Navas, Frank, III;Toone, Eric J.;Zhou, Pei
- 通讯作者:Zhou, Pei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pei Zhou其他文献
Pei Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pei Zhou', 18)}}的其他基金
Mechanistic Insights into the Plant Disease Resistance Mediated by NPR1
NPR1 介导的植物抗病性的机制见解
- 批准号:
10793966 - 财政年份:2022
- 资助金额:
$ 38.22万 - 项目类别:
Mechanistic Insights into the Plant Disease Resistance Mediated by NPR1
NPR1 介导的植物抗病性的机制见解
- 批准号:
10390811 - 财政年份:2022
- 资助金额:
$ 38.22万 - 项目类别:
Mechanistic Insights into the Plant Disease Resistance Mediated by NPR1
NPR1 介导的植物抗病性的机制见解
- 批准号:
10670797 - 财政年份:2022
- 资助金额:
$ 38.22万 - 项目类别:
Discovery and validation of broadly effective LpxH inhibitors as novel therapeutics against multi-drug resistant Gram-negative pathogens
广泛有效的 LpxH 抑制剂的发现和验证作为针对多重耐药革兰氏阴性病原体的新疗法
- 批准号:
10322657 - 财政年份:2019
- 资助金额:
$ 38.22万 - 项目类别:
Structural and Biochemical Studies of LpxC Inhibition
LpxC 抑制的结构和生化研究
- 批准号:
7846499 - 财政年份:2009
- 资助金额:
$ 38.22万 - 项目类别:
Structural, Biochemical and Functional Studies of RNAPII CTD Interacting Proteins
RNAPII CTD 相互作用蛋白的结构、生化和功能研究
- 批准号:
7904244 - 财政年份:2008
- 资助金额:
$ 38.22万 - 项目类别:
Structural, Biochemical and Functional Studies of RNAPII CTD Interacting Proteins
RNAPII CTD 相互作用蛋白的结构、生化和功能研究
- 批准号:
7526527 - 财政年份:2008
- 资助金额:
$ 38.22万 - 项目类别:
Structural, Biochemical and Functional Studies of RNAPII CTD Interacting Proteins
RNAPII CTD 相互作用蛋白的结构、生化和功能研究
- 批准号:
7679450 - 财政年份:2008
- 资助金额:
$ 38.22万 - 项目类别:
Structural, Biochemical and Functional Studies of RNAPII CTD Interacting Proteins
RNAPII CTD 相互作用蛋白的结构、生化和功能研究
- 批准号:
8118895 - 财政年份:2008
- 资助金额:
$ 38.22万 - 项目类别:
相似海外基金
Regulation of Acinetobacter calcoaceticus benzoate degradation
乙酸钙不动杆菌苯甲酸盐降解的调控
- 批准号:
9507393 - 财政年份:1995
- 资助金额:
$ 38.22万 - 项目类别:
Standard Grant