Molecular Pathways Targeted by Potent Antimalarial Pyrazole Compounds
有效抗疟吡唑化合物靶向的分子途径
基本信息
- 批准号:8320487
- 负责人:
- 金额:$ 48.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-02-01 至 2016-01-31
- 项目状态:已结题
- 来源:
- 关键词:Abscisic AcidAddressAffectAntimalarialsBindingBiological AssayBloodCa(2+)-Transporting ATPaseCalciumCell membraneClinical TrialsCollaborationsComputer SimulationCritical PathwaysDNADataDehydrationDevelopmentElectronsEventFutureGene Expression ProfileGenerationsGenesGoalsGrowthHomeostasisInstitutesInvestigationLaboratoriesLeadLightLipidsMalariaMammalian CellMediatingMedicineMethodsMicroscopicMolecularMotorMusMutationMyosin ATPaseNatureParasite resistanceParasitesParasitic DiseasesParentsPathway interactionsPharmaceutical ChemistryPharmaceutical PreparationsPhenotypePhosphoproteinsPhosphorylationPhysiologicalPlantsPlasmodium falciparumProcessProtein phosphataseProteinsPyrazolesRegulatory PathwayResistanceSeriesSignal TransductionStagingStructureStructure-Activity RelationshipTertiary Protein StructureTestingTransgenic OrganismsUniversitiesWashingtonWorkbasecalcium-dependent protein kinasecytotoxicdesignfeedinggenome sequencinginsightinterdisciplinary approachkillingsmutantnovelpre-clinicalprematurereceptorresponsesodium-translocating ATPasesteroidogenic acute regulatory protein
项目摘要
DESCRIPTION (provided by applicant): Malaria remains the most important parasitic disease in the world, affecting hundreds of millions of people and killing almost a million every year. Antimalarial drugs are the mainstay of malaria control, but the spread of parasite resistance to most antimalarials is of grave concern. To address this concern, concerted efforts have been directed at discovering and developing new antimalarial drugs, with some encouraging early results. Yet, it is clear that for the foreseeable future we would need to feed the pipeline of antimalarials, because resistance to new drugs is sure to arise. Recently, we have discovered a series of compounds with a pyrazole core that demonstrate highly potent antimalarial activity. These compounds are undergoing the process of development as an antimalarial drug with a novel structure. Our data also suggest that their mode of action is likely to target a vital and a hitherto unknown vulnerable pathway in malaria parasites. By applying a variety of approaches, we propose to uncover the nature of this pathway and its molecular components. The aims we propose here will use both empirical and hypothesis-driven approaches to identify molecular mechanisms underlying this promising series of compounds. We will employ a variety of methods to assess changes occurring in P. falciparum blood stages as they are rapidly being killed by the pyrazole compounds. These will include: phosphoprotein profiling, transcriptome changes, changes in metabolites, calcium homeostasis, and morphological changes at both light and electron microscopic levels. These studies will provide clues, as well as confirmation, regarding the pathways affected by the compounds. Recent studies suggest that pyrazoles and another series of potent antimalarials, spiroindolones, may be working through a common pathway. We will assess common features in mode of action of these two chemically distinct compounds. We will test a hypothesis that the pyrazole compounds are targeting a pathway similar to phosphorylation regulatory mechanisms observed in plants. This hypothesis is based on our initial observation of mutations discovered through whole genome sequencing of resistant parasites that we found to be important in imparting the resistance phenotype. Overall, these studies has the potential not only to understand mechanism of action for promising antimalarials but also to reveal new targets for future investigations.)
PUBLIC HEALTH RELEVANCE: There is an urgent need to discover, develop and deploy new antimalarial drugs. This project is based on recent discovery of highly potent antimalarial compounds with a novel chemotype. The project aims to uncover a vulnerable molecular pathway affected by these compounds and to identify additional potential targets within the pathway. Successful identification of the target will also permit better design of potential drugs.
描述(申请人提供):疟疾仍然是世界上最重要的寄生虫病,每年影响数亿人,并导致近100万人死亡。抗疟疾药物是控制疟疾的主要药物,但对大多数抗疟疾药物的寄生虫耐药性的传播令人严重关切。为解决这一关切,已作出协调一致的努力,以发现和开发新的抗疟疾药物,并取得了一些令人鼓舞的初步成果。然而,很明显,在可预见的未来,我们将需要供应抗疟疾药物,因为新药肯定会产生抗药性。最近,我们发现了一系列以吡唑为核心的化合物,它们具有很强的抗疟疾活性。这些化合物正在开发成为一种具有新结构的抗疟疾药物。我们的数据还表明,他们的行动模式可能针对疟疾寄生虫中一条至关重要且迄今未知的脆弱途径。通过应用各种方法,我们建议揭示这一途径的性质及其分子组成。我们在这里提出的目标将使用经验和假设驱动的方法来确定这一系列有希望的化合物背后的分子机制。我们将使用各种方法来评估恶性疟原虫血液阶段发生的变化,因为它们正在被吡唑化合物迅速杀死。这些将包括:磷蛋白图谱,转录组变化,代谢物变化,钙稳态,以及光镜和电子显微镜下的形态变化。这些研究将提供关于受化合物影响的途径的线索和确认。最近的研究表明,吡唑和另一系列有效的抗疟疾药物螺吲哚可能通过一个共同的途径发挥作用。我们将评估这两种化学上不同的化合物在作用模式上的共同特征。我们将检验一种假设,即吡唑类化合物的靶向途径类似于植物中观察到的磷酸化调节机制。这一假设是基于我们对通过耐药寄生虫全基因组测序发现的突变的初步观察,我们发现这些突变对赋予耐药表型很重要。总体而言,这些研究不仅有可能了解有希望的抗疟疾药物的作用机制,而且还可能为未来的研究揭示新的靶点。)
公共卫生相关性:迫切需要发现、开发和部署新的抗疟疾药物。该项目是基于最近发现的具有新型化学型的高效抗疟疾化合物。该项目旨在发现受这些化合物影响的一个脆弱的分子途径,并确定该途径中更多的潜在靶点。成功识别目标还将有助于更好地设计潜在药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AKHIL B VAIDYA其他文献
AKHIL B VAIDYA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AKHIL B VAIDYA', 18)}}的其他基金
Molecular Pathways Affected by Drugs that Disrupt Na+ Homeostasis in Malaria Parasites
破坏疟原虫 Na 稳态的药物影响的分子途径
- 批准号:
9364295 - 财政年份:2017
- 资助金额:
$ 48.87万 - 项目类别:
Molecular pathways affected by drugs that disrupt Na+ and lipid homeostasis in malaria parasites
破坏疟原虫中钠和脂质稳态的药物影响的分子途径
- 批准号:
10659924 - 财政年份:2017
- 资助金额:
$ 48.87万 - 项目类别:
Molecular Pathways Affected by Drugs that Disrupt Na+ Homeostasis in Malaria Parasites
破坏疟原虫 Na 稳态的药物影响的分子途径
- 批准号:
9913475 - 财政年份:2017
- 资助金额:
$ 48.87万 - 项目类别:
Molecular Pathways Targeted by Potent Antimalarial Pyrazole Compounds
有效抗疟吡唑化合物靶向的分子途径
- 批准号:
8416318 - 财政年份:2012
- 资助金额:
$ 48.87万 - 项目类别:
Molecular Pathways Targeted by Potent Antimalarial Pyrazole Compounds
有效抗疟吡唑化合物靶向的分子途径
- 批准号:
8605504 - 财政年份:2012
- 资助金额:
$ 48.87万 - 项目类别:
Tools for Genomic Investigations of Plasmodium vivax
间日疟原虫基因组研究工具
- 批准号:
7145646 - 财政年份:2006
- 资助金额:
$ 48.87万 - 项目类别:
Tools for Genomic Investigations of Plasmodium vivax
间日疟原虫基因组研究工具
- 批准号:
7232437 - 财政年份:2006
- 资助金额:
$ 48.87万 - 项目类别:
BIOENERGETICS AND PROTON PUMPS IN MALARIA PARASITES
疟疾寄生虫中的生物能量学和质子泵
- 批准号:
7002735 - 财政年份:2003
- 资助金额:
$ 48.87万 - 项目类别:
BIOENERGETICS AND PROTON PUMPS IN MALARIA PARASITES
疟疾寄生虫中的生物能量学和质子泵
- 批准号:
6760043 - 财政年份:2003
- 资助金额:
$ 48.87万 - 项目类别:
BIOENERGETICS AND PROTON PUMPS IN MALARIA PARASITES
疟疾寄生虫中的生物能量学和质子泵
- 批准号:
6836481 - 财政年份:2003
- 资助金额:
$ 48.87万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 48.87万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 48.87万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 48.87万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 48.87万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 48.87万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 48.87万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 48.87万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 48.87万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 48.87万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 48.87万 - 项目类别:
Research Grant