BIOSTATISTICS AND EVOLUTIONARY ANALYSIS
生物统计学和进化分析
基本信息
- 批准号:8293349
- 负责人:
- 金额:$ 29.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnti-Inflammatory AgentsAnti-inflammatoryAutomobile DrivingBarrett EsophagusBioinformaticsBiological MarkersBiometryClonal EvolutionComputer softwareDataData AnalysesDatabase Management SystemsDatabasesDevelopmentDrug usageEnvironmentEpidemiologyEpigenetic ProcessExperimental DesignsFeedbackFundingFutureGenerationsGeneticGenotypeGoalsHeterogeneityHuman ResourcesIncidenceLesionMalignant NeoplasmsMutationNeoplasmsPatientsPlayProcessProductionProgram Research Project GrantsQuality ControlResearchResearch DesignResearch InfrastructureResourcesRoleSecureSensitivity and SpecificityStagingTimecohortdata exchangedata managementexperiencehigh riskmolecular markernovel strategiespressureprogramsresearch studystatistical centertheoriestumor progression
项目摘要
Core C is responsible for applying biostatistical and clonal evolutionary analyses to the Barrett's Esophagus
Research Program P01 data, including data analysis, data management and data dissemination to all
Projects and Cores. Core C is involved in all stages of experiments across the Projects from the initial
experimental design, to developing bioinformatics software for quality control and automated genotyping
during experiments, to analyses of the resulting data. Because Core C integrates data and experiments
across all projects and cores, it has played a critical role in facilitating the interactions between the Projects
and Cores. During the current funding period, Core C analysis of the data produced by Core B and the
Projects has led to the production of a number of research products such as a panel of biomarkers with a
high sensitivity and specificity for the prediction of future cancer; better understanding of the evolutionary
dynamics that are driving progression to cancer and that non-steroidal anti-inflammatory drug (NSAID) use is
associated with a significant decrease in cancer incidence in Barrett's esophagus patients with molecular
markers of high risk of progression to cancer. We are proposing to extend these analysesduring the next
funding period to epigenetic alterations and an expanded panel of genetic lesions in our large Barrett's
cohort. The clonal evolution that drives neoplastic progression in Barrett's esophagus presents unique
opportunities and challenges for study design and analysis. Whether or not a neoplasm progresses to
malignancy depends upon the mutations that have developed, the selective pressures of the environment,
the generation of new clones and heterogeneity through DMAdamage and epigenetic alterations, and how
clonal competition plays out over time. Core C has the opportunity and expertise to make significant
contributions to assisting the Program Project to understand these processes and fulfill its specific aims.
核心C负责对Barrett‘s食道进行生物统计学和克隆进化分析
研究方案P01数据,包括数据分析、数据管理和向所有人传播数据
项目和核心。核心C从最初开始就参与了项目的所有阶段的实验
实验设计,开发用于质量控制和自动基因分型的生物信息学软件
在实验过程中,对结果数据进行分析。因为核心C集成了数据和实验
在所有项目和核心中,它在促进项目之间的互动方面发挥了关键作用
和核心。在本供资期间,核心C对核心B和核心C产生的数据进行分析
项目已经导致了一些研究产品的生产,例如一组具有
预测未来癌症的高度敏感性和特异性;更好地理解进化
推动癌症进展的动力和非类固醇抗炎药(NSAID)的使用是
与Barrett‘s食道癌发病率显著降低相关的分子药物
高危进展到癌症的标志物。我们建议在下一次扩展这些分析
我们的大巴雷特病的表观遗传改变和扩大的遗传损害小组的资助期
一群人。推动Barrett‘s食道肿瘤进展的克隆进化呈现独特
研究设计和分析的机遇和挑战。无论肿瘤是否进展到
恶性依赖于已经形成的突变,环境的选择压力,
通过DMAdamage和表观遗传改变产生新克隆和异质性,以及如何
随着时间的推移,克隆竞争会上演。核心C有机会和专业知识使重要的
帮助计划项目了解这些过程并实现其特定目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlo Maley其他文献
Carlo Maley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carlo Maley', 18)}}的其他基金
Modeling Neoplastic Progression in Barrett's Esophagus - Renewal -2
巴雷特食管肿瘤进展建模 - 更新 -2
- 批准号:
10594704 - 财政年份:2023
- 资助金额:
$ 29.58万 - 项目类别:
A cell-cycle induced genetic recorder for simultaneous recovery of cell divisions and lineage
细胞周期诱导的遗传记录仪,用于同时恢复细胞分裂和谱系
- 批准号:
10579996 - 财政年份:2022
- 资助金额:
$ 29.58万 - 项目类别:
Arizona Cancer and Evolution Center (ACE)
亚利桑那州癌症与进化中心 (ACE)
- 批准号:
10524223 - 财政年份:2018
- 资助金额:
$ 29.58万 - 项目类别:
The Role of the Microbiome in Cancer Suppression and Susceptibility Across Species
微生物组在跨物种癌症抑制和易感性中的作用
- 批准号:
10381388 - 财政年份:2018
- 资助金额:
$ 29.58万 - 项目类别:
Arizona Cancer and Evolution Center (ACE)
亚利桑那州癌症与进化中心 (ACE)
- 批准号:
10392864 - 财政年份:2018
- 资助金额:
$ 29.58万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 29.58万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 29.58万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 29.58万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 29.58万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 29.58万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 29.58万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 29.58万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 29.58万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 29.58万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 29.58万 - 项目类别:
Research Grant














{{item.name}}会员




