SHAPE OPTIMIZING DIFFEOMORPHISMS FOR COMPUTATIONAL BIOLOGY

计算生物学的形状优化微分形

基本信息

  • 批准号:
    8363477
  • 负责人:
  • 金额:
    $ 2.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-01 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. This proposal will contribute a new collaboration for implementing rigorous spatiotemporal medical image analysis in a large scale computing environment. The system will dramatically enhance the neuroimaging community's quantitative understanding of normal and pathological aging and correlated variables. Medical images capture the changes that occur in an individual over time and samples the range of anatomical and functional differences visible in a population lifespan. Our goal is to associate these differences with causes, for example, innate population variability, injury, pathology, or the effects of genotype on phenotype. The recently proposed Diffeomorphometry (DM) system quantifies and relates these variables to an optimal spatiotemporal coordinate system. This novel technique allows the atlas to evolve in time along with the population to statistically capture effects of age, disease or other factors. This common, evolving map space gives a wealth of prior knowledge, allowing one to build probabilities describing ranges and types of variation in shape and function. These aggregate population attributes may then be studied and visualized, used in research, as well as teaching and diagnosis. Our DM method is designed with the axioms of symmetry (the algorithms must be symmetric) and specificity (the analysis should be optimal in the study space) in mind and with the ability to automatically generate database-specific atlases. The rigorous and symmetric definition of change given by DM captures differences in neuroanatomy with superlative accuracy, reproducibility and high level of detail. Consequently, a DM study maximizes the information extracted from a neuroimaging cohort, especially when correlated with, for instance, genetic or behavioral variables. Furthermore, DM satisfies pressing research needs in neuroimaging: DM derives optimal atlases from arbitrarily sized databases and gives large deformation optimization of anatomical correspondence, through landmark and statistical guidance. The resources in the UCLA Center for Computational Biology (CCB) will allow these methods to be applied on the large datasets they were designed for and at an unprecedented resolution and scale. The proposed work has three distinctive aims: collaboration, methodology and clinical evaluation/application: Instantiate a collaboration between UPenn and UCLA, where data and algorithms are shared and disseminated via the Center for Computational Biology; Develop Diffeomorphometry into a cutting-edge, large-scale, publicly available computational tool; Evaluate and refine the developed methodology, as well as compare with CCB brain mapping tools, on neuroimaging studies of structure-function associations under neurodegenerative conditions
该子项目是利用资源的众多研究子项目之一 由 NIH/NCRR 资助的中心拨款提供。子项目的主要支持 并且子项目的主要研究者可能是由其他来源提供的, 包括其他 NIH 来源。 子项目可能列出的总成本 代表子项目使用的中心基础设施的估计数量, NCRR 赠款不直接向子项目或子项目工作人员提供资金。 该提案将为在大规模计算环境中实施严格的时空医学图像分析做出新的合作。该系统将极大地增强神经影像学界对正常和病理性衰老及相关变量的定量理解。医学图像捕捉个体随时间发生的变化,并对人群生命周期中可见的解剖和功能差异范围进行采样。我们的目标是将这些差异与原因联系起来,例如先天群体变异、损伤、病理或基因型对表型的影响。最近提出的微分形态测量(DM)系统量化了这些变量并将其与最佳时空坐标系相关联。这项新技术使图谱能够随着人口的变化而及时发展,以统计方式捕捉年龄、疾病或其他因素的影响。这种共同的、不断发展的地图空间提供了丰富的先验知识,使人们能够建立描述形状和功能变化的范围和类型的概率。然后可以对这些总体人口属性进行研究和可视化,用于研究以及教学和诊断。我们的 DM 方法在设计时考虑了对称性公理(算法必须是对称的)和特异性(分析应该在研究空间中是最佳的),并且能够自动生成特定于数据库的图集。 DM 给出的变化的严格且对称的定义以最高的准确性、可重复性和高细节水平捕捉了神经解剖学的差异。因此,DM 研究最大化了从神经影像队列中提取的信息,尤其是与遗传或行为变量相关时。此外,DM 满足了神经影像学领域紧迫的研究需求:DM 从任意大小的数据库中导出最佳图集,并通过界标和统计指导对解剖对应关系进行大变形优化。加州大学洛杉矶分校计算生物学中心 (CCB) 的资源将使这些方法能够以前所未有的分辨率和规模应用于其设计的大型数据集。拟议的工作有三个独特的目标:合作、方法论和临床评估/应用:实例化宾夕法尼亚大学和加州大学洛杉矶分校之间的合作,通过计算生物学中心共享和传播数据和算法;将微分形态学发展成为尖端的、大规模的、公开可用的计算工具;评估和完善所开发的方法,并与 CCB 脑图工具进行比较,用于神经退行性疾病条件下结构-功能关联的神经影像研究

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JAMES C GEE其他文献

JAMES C GEE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JAMES C GEE', 18)}}的其他基金

Multi-scale and multi-modality imaging of neuropathology in VCID
VCID 神经病理学的多尺度、多模态成像
  • 批准号:
    10812034
  • 财政年份:
    2023
  • 资助金额:
    $ 2.03万
  • 项目类别:
Advanced Normalization Tools
高级标准化工具
  • 批准号:
    10445130
  • 财政年份:
    2022
  • 资助金额:
    $ 2.03万
  • 项目类别:
Advanced Normalization Tools
高级标准化工具
  • 批准号:
    10708793
  • 财政年份:
    2022
  • 资助金额:
    $ 2.03万
  • 项目类别:
Establishing Common Coordinate Framework for Quantitative Cell Census in Developing Mouse Brains
建立小鼠大脑发育中定量细胞普查的通用坐标框架
  • 批准号:
    10088508
  • 财政年份:
    2020
  • 资助金额:
    $ 2.03万
  • 项目类别:
International Conference on Information Processing in Medical Imaging 2019
2019年医学影像信息处理国际会议
  • 批准号:
    9760660
  • 财政年份:
    2019
  • 资助金额:
    $ 2.03万
  • 项目类别:
ITK-Lung: A Software Framework for Lung Image Processing and Analysis
ITK-Lung:肺部图像处理和分析的软件框架
  • 批准号:
    9325271
  • 财政年份:
    2017
  • 资助金额:
    $ 2.03万
  • 项目类别:
A Community Resource for Single Cell Data in the Brain
大脑中单细胞数据的社区资源
  • 批准号:
    9415946
  • 财政年份:
    2017
  • 资助金额:
    $ 2.03万
  • 项目类别:
Waxholm Space for Rodent Neuroinformatics
啮齿动物神经信息学沃克斯霍姆空间
  • 批准号:
    9338327
  • 财政年份:
    2016
  • 资助金额:
    $ 2.03万
  • 项目类别:
Waxholm Space for Rodent Neuroinformatics
啮齿动物神经信息学沃克斯霍姆空间
  • 批准号:
    9763673
  • 财政年份:
    2016
  • 资助金额:
    $ 2.03万
  • 项目类别:
NON-AFFINE REGISTRATION
非仿射配准
  • 批准号:
    8363498
  • 财政年份:
    2011
  • 资助金额:
    $ 2.03万
  • 项目类别:

相似海外基金

BrainMaps - a unified web platform for novel model organism brain atlases
BrainMaps - 新型模型生物脑图谱的统一网络平台
  • 批准号:
    23KF0076
  • 财政年份:
    2023
  • 资助金额:
    $ 2.03万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Sexual dimorphic cell type and connectivity atlases of the aging and AD mouse brains
衰老和 AD 小鼠大脑的性二态性细胞类型和连接图谱
  • 批准号:
    10740308
  • 财政年份:
    2023
  • 资助金额:
    $ 2.03万
  • 项目类别:
Pre-cancer atlases of cutaneous and hematologic origin (PATCH Center)
皮肤和血液来源的癌前图谱(PATCH 中心)
  • 批准号:
    10818803
  • 财政年份:
    2023
  • 资助金额:
    $ 2.03万
  • 项目类别:
Multi-modal cell type atlases of somatosensory spinal cord neurons
体感脊髓神经元多模态细胞类型图谱
  • 批准号:
    10743857
  • 财政年份:
    2022
  • 资助金额:
    $ 2.03万
  • 项目类别:
Ultra-high Resolution Structural Connectome Atlases of the Animal Brain and their Associated Toolbox
动物大脑的超高分辨率结构连接图谱及其相关工具箱
  • 批准号:
    10558629
  • 财政年份:
    2022
  • 资助金额:
    $ 2.03万
  • 项目类别:
Multi-modal cell type atlases of somatosensory spinal cord neurons
体感脊髓神经元多模态细胞类型图谱
  • 批准号:
    10508739
  • 财政年份:
    2022
  • 资助金额:
    $ 2.03万
  • 项目类别:
Atlases and statistical modeling of vascular networks from medical images
医学图像血管网络的图谱和统计建模
  • 批准号:
    RGPIN-2018-05283
  • 财政年份:
    2022
  • 资助金额:
    $ 2.03万
  • 项目类别:
    Discovery Grants Program - Individual
Modularly built, complete, coordinate- and template-free brain atlases
模块化构建、完整、无坐标和模板的大脑图谱
  • 批准号:
    10570256
  • 财政年份:
    2022
  • 资助金额:
    $ 2.03万
  • 项目类别:
Ultra-high Resolution Structural Connectome Atlases of the Animal Brain and their Associated Toolbox
动物大脑的超高分辨率结构连接图谱及其相关工具箱
  • 批准号:
    10364874
  • 财政年份:
    2022
  • 资助金额:
    $ 2.03万
  • 项目类别:
Modularly built, complete, coordinate- and template-free brain atlases
模块化构建、完整、无坐标和模板的大脑图谱
  • 批准号:
    10467697
  • 财政年份:
    2022
  • 资助金额:
    $ 2.03万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了