EFFICIENT MARGINALIZATION TO COMPUTE PROTEIN POSTERIOR PROBABILITIES FROM SHOTGU

通过 Shotgu 进行有效边缘化计算蛋白质后验概率

基本信息

  • 批准号:
    8365888
  • 负责人:
  • 金额:
    $ 2.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2012-06-30
  • 项目状态:
    已结题

项目摘要

This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The problem of identifying proteins from a shotgun proteomics experiment has not been definitively solved. Identifying the proteins in a sample requires ranking them, ideally with interpretable scores. In particular, ?degenerate? peptides, which map to multiple proteins, have made such a ranking difficult to compute. The problem of computing posterior probabilities for the proteins, which can be interpreted as confidence in a protein?s presence, has been especially daunting. Previous approaches have either ignored the peptide degeneracy problem completely, addressed it by computing a heuristic set of proteins or heuristic posterior probabilities, or estimated the posterior probabilities with sampling methods. We present a probabilistic model for protein identification in tandem mass spectrometry that recognizes peptide degeneracy. We then introduce graph-transforming algorithms that facilitate efficient computation of protein probabilities, even for large data sets. We evaluate our identification procedure on five different well-characterized data sets and demonstrate our ability to efficiently compute high-quality protein posteriors.
这个子项目是利用资源的许多研究子项目之一。 由NIH/NCRR资助的中心拨款提供。对子项目的主要支持 子项目的首席调查员可能是由其他来源提供的, 包括美国国立卫生研究院的其他来源。为子项目列出的总成本可能 表示该子项目使用的中心基础设施的估计数量, 不是由NCRR赠款提供给次级项目或次级项目工作人员的直接资金。 从鸟枪式蛋白质组学实验中识别蛋白质的问题还没有得到最终解决。识别样本中的蛋白质需要对它们进行排序,理想的情况是使用可解释的分数。尤其是?堕落?多肽映射到多个蛋白质,使得这样的排名很难计算。计算蛋白质的后验概率,这可以解释为对蛋白质存在的置信度?S,这一问题尤其令人望而生畏。以往的方法要么完全忽略了肽的简并问题,要么通过计算一组启发式的蛋白质或启发式的后验概率来解决这个问题,要么用抽样的方法估计后验概率。我们提出了一个在串联质谱学中识别蛋白质的概率模型,该模型识别多肽的简并。然后,我们介绍了图形转换算法,这些算法有助于高效计算蛋白质概率,即使是对于大型数据集。我们在五个不同的特征良好的数据集上评估了我们的识别过程,并展示了我们高效计算高质量蛋白质后验的能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Noble其他文献

William Noble的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Noble', 18)}}的其他基金

ON USING SAMPLES OF KNOWN PROTEIN CONTENT TO ASSESS THE STATISTICAL CALIBRATION
关于使用已知蛋白质含量的样品来评估统计校准
  • 批准号:
    8365887
  • 财政年份:
    2011
  • 资助金额:
    $ 2.14万
  • 项目类别:
LEARNING SPARSE MODELS FOR A DYNAMIC BAYESIAN NETWORK CLASSIFIER OF PROTEIN SECO
学习蛋白质 SECO 动态贝叶斯网络分类器的稀疏模型
  • 批准号:
    8365898
  • 财政年份:
    2011
  • 资助金额:
    $ 2.14万
  • 项目类别:
A DYNAMIC BAYESIAN NETWORK FOR IDENTIFYING PROTEIN BINDING FOOTPRINTS FROM SINGL
一种用于识别单个蛋白质结合足迹的动态贝叶斯网络
  • 批准号:
    8365880
  • 财政年份:
    2011
  • 资助金额:
    $ 2.14万
  • 项目类别:
A UNIFIED MULTITASK ARCHITECTURE FOR PREDICTING LOCAL PROTEIN PROPERTIES
用于预测局部蛋白质特性的统一多任务架构
  • 批准号:
    8365897
  • 财政年份:
    2011
  • 资助金额:
    $ 2.14万
  • 项目类别:
COMPUTATIONAL CHARACTERIZATION OF HOMING ENDONUCLEASE BINDING SPECIFICITY
归巢核酸内切酶结合特异性的计算表征
  • 批准号:
    8365906
  • 财政年份:
    2011
  • 资助金额:
    $ 2.14万
  • 项目类别:
PRECURSOR CHARGE STATE PREDICTION FOR ELECTRON TRANSFER DISSOCIATION TANDEM MASS
电子转移解离串联质量的前体电荷态预测
  • 批准号:
    8365872
  • 财政年份:
    2011
  • 资助金额:
    $ 2.14万
  • 项目类别:
SEMINARS GIVEN BY WILLIAM STAFFORD NOBLE
威廉·斯塔福德·诺布尔举办的研讨会
  • 批准号:
    8365905
  • 财政年份:
    2011
  • 资助金额:
    $ 2.14万
  • 项目类别:
SOFTWARE DISTRIBUTED BY THE NOBLE LAB, 2010-2011
NOBLE LAB 分发的软件,2010-2011 年
  • 批准号:
    8365904
  • 财政年份:
    2011
  • 资助金额:
    $ 2.14万
  • 项目类别:
KINDERGARTEN TOUR
幼儿园参观
  • 批准号:
    8365879
  • 财政年份:
    2011
  • 资助金额:
    $ 2.14万
  • 项目类别:
LARGE-SCALE PREDICTION OF PROTEIN-PROTEIN INTERACTIONS FROM STRUCTURE
从结构大规模预测蛋白质-蛋白质相互作用
  • 批准号:
    8171275
  • 财政年份:
    2010
  • 资助金额:
    $ 2.14万
  • 项目类别:

相似海外基金

REU Site: Algorithms and Optimization for Sustainability and Biology
REU 网站:可持续性和生物学的算法和优化
  • 批准号:
    2243010
  • 财政年份:
    2023
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Standard Grant
Multi-resolution Molecular Dynamics Algorithms for Computational Biology
计算生物学的多分辨率分子动力学算法
  • 批准号:
    EP/V047469/1
  • 财政年份:
    2021
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Research Grant
Developing novel machine learning algorithms for network biology
为网络生物学开发新颖的机器学习算法
  • 批准号:
    RGPIN-2015-06751
  • 财政年份:
    2020
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Discovery Grants Program - Individual
Developing novel machine learning algorithms for network biology
为网络生物学开发新颖的机器学习算法
  • 批准号:
    RGPIN-2015-06751
  • 财政年份:
    2019
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Discovery Grants Program - Individual
Developing novel machine learning algorithms for network biology
为网络生物学开发新颖的机器学习算法
  • 批准号:
    RGPIN-2015-06751
  • 财政年份:
    2018
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Discovery Grants Program - Individual
Machine Learning Algorithms for Actionable Knowledge Discovery in Synthetic Biology
合成生物学中可操作知识发现的机器学习算法
  • 批准号:
    2132169
  • 财政年份:
    2018
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Studentship
AF: Medium: Collaborative Research: Sequential and Parallel Algorithms for Approximate Sequence Matching with Applications to Computational Biology
AF:媒介:协作研究:近似序列匹配的顺序和并行算法及其在计算生物学中的应用
  • 批准号:
    1704552
  • 财政年份:
    2017
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Standard Grant
Developing novel machine learning algorithms for network biology
为网络生物学开发新颖的机器学习算法
  • 批准号:
    RGPIN-2015-06751
  • 财政年份:
    2017
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Discovery Grants Program - Individual
Workshop on Future Directions for Algorithms in Biology
生物学算法未来方向研讨会
  • 批准号:
    1748493
  • 财政年份:
    2017
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Standard Grant
AF: Medium: Collaborative Research: Sequential and Parallel Algorithms for Approximate Sequence Matching with Applications to Computational Biology
AF:媒介:协作研究:近似序列匹配的顺序和并行算法及其在计算生物学中的应用
  • 批准号:
    1703489
  • 财政年份:
    2017
  • 资助金额:
    $ 2.14万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了