COMPUTATIONAL CHARACTERIZATION OF HOMING ENDONUCLEASE BINDING SPECIFICITY
归巢核酸内切酶结合特异性的计算表征
基本信息
- 批准号:8365906
- 负责人:
- 金额:$ 0.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:BindingBinding SitesBiological Neural NetworksBiologyCleaved cellComputing MethodologiesDNA BindingDNA SequenceDeoxyribonuclease IEnzymesEventFundingFungal GenomeGenetic RecombinationGenomicsGrantHomingMedicalNational Center for Research ResourcesPatternPrincipal InvestigatorProcessProteinsResearchResearch InfrastructureResourcesSiteSourceSpecificityUnited States National Institutes of Healthcostendonucleasegene therapyhuman DNAinsertion/deletion mutation
项目摘要
This subproject is one of many research subprojects utilizing the resources
provided by a Center grant funded by NIH/NCRR. Primary support for the subproject
and the subproject's principal investigator may have been provided by other sources,
including other NIH sources. The Total Cost listed for the subproject likely
represents the estimated amount of Center infrastructure utilized by the subproject,
not direct funding provided by the NCRR grant to the subproject or subproject staff.
Homing endonucleases are DNA-cleaving enzymes that generate double
strand breaks at specific genomic invasion sites. These proteins are
attractive for many biotech and medical applications, including gene
therapy, because they have the potential to activate site-specific
recombination events that result in the insertion, deletion, mutation
or correction of DNA sequences. In this project, we develop
computational methods to identify regions in human DNA that are bound
and cleaved by homing endonucleases with extremely high accuracy.
Specifically, we developed a neural network classifier that can
discriminate with high accuracy between sites that are bound by the
enzyme and sites that are both bound and cleaved. In this context,
higher order feature representations have the potential to capture the
statistical patterns that contribute to the cleavage process.
这个子项目是利用资源的许多研究子项目之一。
由NIH/NCRR资助的中心拨款提供。对子项目的主要支持
子项目的首席调查员可能是由其他来源提供的,
包括美国国立卫生研究院的其他来源。为子项目列出的总成本可能
表示该子项目使用的中心基础设施的估计数量,
不是由NCRR赠款提供给次级项目或次级项目工作人员的直接资金。
归巢内切酶是一种DNA裂解酶,可产生
在特定的基因组入侵部位发生链断裂。这些蛋白质是
对包括基因在内的许多生物技术和医学应用具有吸引力
治疗,因为它们有可能激活特定部位
导致插入、缺失、突变的重组事件
或DNA序列的校正。在这个项目中,我们开发了
识别人类DNA中结合区域的计算方法
并被寻的内切酶以极高的精确度切割。
具体来说,我们开发了一种神经网络分类器,它可以
以高精度区分受
既结合又切割的酶和位点。在这方面,
高阶要素表示有可能捕获
有助于卵裂过程的统计模式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Noble其他文献
William Noble的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Noble', 18)}}的其他基金
ON USING SAMPLES OF KNOWN PROTEIN CONTENT TO ASSESS THE STATISTICAL CALIBRATION
关于使用已知蛋白质含量的样品来评估统计校准
- 批准号:
8365887 - 财政年份:2011
- 资助金额:
$ 0.97万 - 项目类别:
LEARNING SPARSE MODELS FOR A DYNAMIC BAYESIAN NETWORK CLASSIFIER OF PROTEIN SECO
学习蛋白质 SECO 动态贝叶斯网络分类器的稀疏模型
- 批准号:
8365898 - 财政年份:2011
- 资助金额:
$ 0.97万 - 项目类别:
A DYNAMIC BAYESIAN NETWORK FOR IDENTIFYING PROTEIN BINDING FOOTPRINTS FROM SINGL
一种用于识别单个蛋白质结合足迹的动态贝叶斯网络
- 批准号:
8365880 - 财政年份:2011
- 资助金额:
$ 0.97万 - 项目类别:
A UNIFIED MULTITASK ARCHITECTURE FOR PREDICTING LOCAL PROTEIN PROPERTIES
用于预测局部蛋白质特性的统一多任务架构
- 批准号:
8365897 - 财政年份:2011
- 资助金额:
$ 0.97万 - 项目类别:
EFFICIENT MARGINALIZATION TO COMPUTE PROTEIN POSTERIOR PROBABILITIES FROM SHOTGU
通过 Shotgu 进行有效边缘化计算蛋白质后验概率
- 批准号:
8365888 - 财政年份:2011
- 资助金额:
$ 0.97万 - 项目类别:
PRECURSOR CHARGE STATE PREDICTION FOR ELECTRON TRANSFER DISSOCIATION TANDEM MASS
电子转移解离串联质量的前体电荷态预测
- 批准号:
8365872 - 财政年份:2011
- 资助金额:
$ 0.97万 - 项目类别:
SOFTWARE DISTRIBUTED BY THE NOBLE LAB, 2010-2011
NOBLE LAB 分发的软件,2010-2011 年
- 批准号:
8365904 - 财政年份:2011
- 资助金额:
$ 0.97万 - 项目类别:
LARGE-SCALE PREDICTION OF PROTEIN-PROTEIN INTERACTIONS FROM STRUCTURE
从结构大规模预测蛋白质-蛋白质相互作用
- 批准号:
8171275 - 财政年份:2010
- 资助金额:
$ 0.97万 - 项目类别:
相似海外基金
Bridging the Gap: Next-Gen Tools for Accurate Prediction of Disordered Protein Binding Sites
弥合差距:准确预测无序蛋白质结合位点的下一代工具
- 批准号:
24K15172 - 财政年份:2024
- 资助金额:
$ 0.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design of protein crystal templates with multiple binding sites for tracking metal complex reactions.
设计具有多个结合位点的蛋白质晶体模板,用于跟踪金属络合物反应。
- 批准号:
23K04928 - 财政年份:2023
- 资助金额:
$ 0.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dynamic changes in PIP2 binding sites and their impact on axonal targeting and function of epilepsy-associated KCNQ/Kv7 channels
PIP2 结合位点的动态变化及其对癫痫相关 KCNQ/Kv7 通道的轴突靶向和功能的影响
- 批准号:
10744934 - 财政年份:2023
- 资助金额:
$ 0.97万 - 项目类别:
Computational methods to identify small molecule RNA binding sites
识别小分子 RNA 结合位点的计算方法
- 批准号:
573688-2022 - 财政年份:2022
- 资助金额:
$ 0.97万 - 项目类别:
University Undergraduate Student Research Awards
Identification of potential drug binding sites within allosteric networks in cyclic nucleotide modulated channels
环核苷酸调节通道变构网络内潜在药物结合位点的鉴定
- 批准号:
10704557 - 财政年份:2022
- 资助金额:
$ 0.97万 - 项目类别:
Identification of potential drug binding sites within allosteric networks in cyclic nucleotide modulated channels
环核苷酸调节通道变构网络内潜在药物结合位点的鉴定
- 批准号:
10537846 - 财政年份:2022
- 资助金额:
$ 0.97万 - 项目类别:
Identifying new types of inhibitors in quinone binding sites in photosynthetic enzymes
鉴定光合酶醌结合位点的新型抑制剂
- 批准号:
2753921 - 财政年份:2022
- 资助金额:
$ 0.97万 - 项目类别:
Studentship
Development of broad nanovaccines targeting diverse coronavirus receptor-binding sites
开发针对不同冠状病毒受体结合位点的广泛纳米疫苗
- 批准号:
10328140 - 财政年份:2022
- 资助金额:
$ 0.97万 - 项目类别:
Exploiting Water Network Perturbations in Protein Binding Sites
利用蛋白质结合位点的水网络扰动
- 批准号:
10621368 - 财政年份:2021
- 资助金额:
$ 0.97万 - 项目类别:
SBIR Phase I: Nonlinear optical method for identifying protein-ligand binding sites
SBIR 第一阶段:识别蛋白质-配体结合位点的非线性光学方法
- 批准号:
2111821 - 财政年份:2021
- 资助金额:
$ 0.97万 - 项目类别:
Standard Grant














{{item.name}}会员




