LEARNING SPARSE MODELS FOR A DYNAMIC BAYESIAN NETWORK CLASSIFIER OF PROTEIN SECO
学习蛋白质 SECO 动态贝叶斯网络分类器的稀疏模型
基本信息
- 批准号:8365898
- 负责人:
- 金额:$ 2.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAmino AcidsBindingBiologicalBiologyDataElementsFundingFungal GenomeGrantLabelLearningModelingNational Center for Research ResourcesPerformancePrincipal InvestigatorProtein DatabasesProteinsResearchResearch InfrastructureResourcesSecondary Protein StructureSimulateSourceStructureTestingUnited States National Institutes of Healthcomputer based statistical methodscostinsightprotein functionthree dimensional structure
项目摘要
This subproject is one of many research subprojects utilizing the resources
provided by a Center grant funded by NIH/NCRR. Primary support for the subproject
and the subproject's principal investigator may have been provided by other sources,
including other NIH sources. The Total Cost listed for the subproject likely
represents the estimated amount of Center infrastructure utilized by the subproject,
not direct funding provided by the NCRR grant to the subproject or subproject staff.
Protein secondary structure prediction provides insight into protein function and is a valuable preliminary step for predicting the 3D structure of a protein. Dynamic Bayesian networks (DBNs) have been shown to provide state-of-the-art performance in secondary structure prediction. As the size of the protein database grows, it becomes feasible to use a richer model in an effort to capture subtle correlations among the amino acids and the predicted labels. In this context, it is beneficial to derive sparse models that discourage over-fitting and provide biological insight.
Results: We introduce an algorithm for sparsifying the parameters of a DBN. Using this algorithm, we can automatically remove up to 80% of the parameters of a DBN while maintaining the same level of predictive accuracy. We also prove an upper bound for the test error difference between the sparse and fully dense models. Finally, we demonstrate, using simulated data, that the algorithm is able to recover true sparse structures with high accuracy, and using real data, that the sparse model identifies known correlation structure related to different classes of secondary structure elements.
这个子项目是许多利用资源的研究子项目之一
由NIH/NCRR资助的中心拨款提供。子项目的主要支持
而子项目的主要调查员可能是由其他来源提供的,
包括其它NIH来源。 列出的子项目总成本可能
代表子项目使用的中心基础设施的估计数量,
而不是由NCRR赠款提供给子项目或子项目工作人员的直接资金。
蛋白质二级结构预测提供了对蛋白质功能的深入了解,并且是预测蛋白质3D结构的有价值的初步步骤。 动态贝叶斯网络(DBN)已被证明在二级结构预测中提供最先进的性能。 随着蛋白质数据库规模的增长,使用更丰富的模型来捕获氨基酸和预测标签之间的微妙相关性变得可行。 在这种情况下,导出稀疏模型是有益的,该稀疏模型阻止过度拟合并提供生物学见解。
结果:我们介绍了一种算法稀疏的DBN的参数。使用这种算法,我们可以自动删除高达80%的DBN参数,同时保持相同的预测精度。 我们还证明了一个上界的测试误差之间的差异稀疏和完全密集的模型。 最后,我们证明,使用模拟数据,该算法是能够恢复真正的稀疏结构具有高精度,并使用真实的数据,稀疏模型识别已知的相关结构相关的不同类别的二级结构元素。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Noble其他文献
William Noble的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Noble', 18)}}的其他基金
ON USING SAMPLES OF KNOWN PROTEIN CONTENT TO ASSESS THE STATISTICAL CALIBRATION
关于使用已知蛋白质含量的样品来评估统计校准
- 批准号:
8365887 - 财政年份:2011
- 资助金额:
$ 2.14万 - 项目类别:
A DYNAMIC BAYESIAN NETWORK FOR IDENTIFYING PROTEIN BINDING FOOTPRINTS FROM SINGL
一种用于识别单个蛋白质结合足迹的动态贝叶斯网络
- 批准号:
8365880 - 财政年份:2011
- 资助金额:
$ 2.14万 - 项目类别:
A UNIFIED MULTITASK ARCHITECTURE FOR PREDICTING LOCAL PROTEIN PROPERTIES
用于预测局部蛋白质特性的统一多任务架构
- 批准号:
8365897 - 财政年份:2011
- 资助金额:
$ 2.14万 - 项目类别:
COMPUTATIONAL CHARACTERIZATION OF HOMING ENDONUCLEASE BINDING SPECIFICITY
归巢核酸内切酶结合特异性的计算表征
- 批准号:
8365906 - 财政年份:2011
- 资助金额:
$ 2.14万 - 项目类别:
EFFICIENT MARGINALIZATION TO COMPUTE PROTEIN POSTERIOR PROBABILITIES FROM SHOTGU
通过 Shotgu 进行有效边缘化计算蛋白质后验概率
- 批准号:
8365888 - 财政年份:2011
- 资助金额:
$ 2.14万 - 项目类别:
PRECURSOR CHARGE STATE PREDICTION FOR ELECTRON TRANSFER DISSOCIATION TANDEM MASS
电子转移解离串联质量的前体电荷态预测
- 批准号:
8365872 - 财政年份:2011
- 资助金额:
$ 2.14万 - 项目类别:
SOFTWARE DISTRIBUTED BY THE NOBLE LAB, 2010-2011
NOBLE LAB 分发的软件,2010-2011 年
- 批准号:
8365904 - 财政年份:2011
- 资助金额:
$ 2.14万 - 项目类别:
LARGE-SCALE PREDICTION OF PROTEIN-PROTEIN INTERACTIONS FROM STRUCTURE
从结构大规模预测蛋白质-蛋白质相互作用
- 批准号:
8171275 - 财政年份:2010
- 资助金额:
$ 2.14万 - 项目类别:
相似海外基金
Discovery of nonnatural amino acids promoting alubmin binding
发现促进白蛋白结合的非天然氨基酸
- 批准号:
20K19926 - 财政年份:2020
- 资助金额:
$ 2.14万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Engineering RNA-binding proteins with unnatural amino acids and expanded genetic codes
用非天然氨基酸和扩展遗传密码改造 RNA 结合蛋白
- 批准号:
511377-2017 - 财政年份:2017
- 资助金额:
$ 2.14万 - 项目类别:
University Undergraduate Student Research Awards
Monitoring and Tuning a Gas-Binding Heme Protein with Unnatural Amino Acids
用非天然氨基酸监测和调节气体结合血红素蛋白
- 批准号:
9231766 - 财政年份:2016
- 资助金额:
$ 2.14万 - 项目类别:
Research Initiation Award: Toward Bionanoscience - Binding of Amino Acids with Graphene and N-doped Graphene
研究启动奖:迈向生物纳米科学——氨基酸与石墨烯和氮掺杂石墨烯的结合
- 批准号:
1601071 - 财政年份:2016
- 资助金额:
$ 2.14万 - 项目类别:
Standard Grant
Unnatural Amino Acids of Tyrosine with Salicylic Acid into Cognate Peptide Binding Sequences to Observe Benefit in Cell-Permeability and Utility Towards Inhibitor Design
将酪氨酸的非天然氨基酸与水杨酸形成同源肽结合序列,以观察细胞渗透性和抑制剂设计实用性的益处
- 批准号:
443453-2013 - 财政年份:2015
- 资助金额:
$ 2.14万 - 项目类别:
Postgraduate Scholarships - Doctoral
Unnatural Amino Acids of Tyrosine with Salicylic Acid into Cognate Peptide Binding Sequences to Observe Benefit in Cell-Permeability and Utility Towards Inhibitor Design
将酪氨酸的非天然氨基酸与水杨酸形成同源肽结合序列,以观察细胞渗透性和抑制剂设计实用性的益处
- 批准号:
443453-2013 - 财政年份:2014
- 资助金额:
$ 2.14万 - 项目类别:
Postgraduate Scholarships - Doctoral
Unnatural Amino Acids of Tyrosine with Salicylic Acid into Cognate Peptide Binding Sequences to Observe Benefit in Cell-Permeability and Utility Towards Inhibitor Design
将酪氨酸的非天然氨基酸与水杨酸形成同源肽结合序列,以观察细胞渗透性和抑制剂设计实用性的益处
- 批准号:
443453-2013 - 财政年份:2013
- 资助金额:
$ 2.14万 - 项目类别:
Postgraduate Scholarships - Doctoral
IDENTIFICATION OF CONSERVED AMINO-ACIDS IN AN LPS BINDING CLEFT
LPS 结合裂缝中保守氨基酸的鉴定
- 批准号:
7164303 - 财政年份:2005
- 资助金额:
$ 2.14万 - 项目类别:
IDENTIFICATION OF CONSERVED AMINO-ACIDS IN AN LPS BINDING CLEFT
LPS 结合裂缝中保守氨基酸的鉴定
- 批准号:
6973859 - 财政年份:2004
- 资助金额:
$ 2.14万 - 项目类别:
IDENTIFICATION OF CONSERVED AMINO ACIDS IN AN LPS BINDING CLEFT
LPS 结合裂缝中保守氨基酸的鉴定
- 批准号:
6644340 - 财政年份:2002
- 资助金额:
$ 2.14万 - 项目类别:














{{item.name}}会员




