Force Sensing with Nanotubes
用纳米管进行力传感
基本信息
- 批准号:8277878
- 负责人:
- 金额:$ 17.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:ActinsAdhesivesAdvanced DevelopmentBindingBiopolymersBreast CarcinomaCarcinomaCell membraneCellsCharacteristicsChemicalsDataDiagnostic Neoplasm StagingEmbryonic DevelopmentEpidermal Growth FactorEpidermal Growth Factor ReceptorEpithelialEpithelial CellsF-ActinFilamentFilopodiaFluorescenceFluorescence MicroscopyFree EnergyGoalsGrowth FactorGrowth and Development functionHumanImageImmune responseInvadedLengthLifeMalignant NeoplasmsMammalian CellMeasurableMeasurementMeasuresMechanicsMediatingMembraneMethodologyMethodsMicroscopyModelingMolecularMonitorMotorMovementNanotechnologyNanotubesNatural regenerationNeoplasm MetastasisOrganismPathway interactionsPlayPreparationPrimary NeoplasmProductionProteinsReactionRelative (related person)Research TechnicsRoleSiteSolutionsStagingStructureTemperatureTimeTissuesTongueTractionTubeWorkWound Healingbasecancer cellcell growthcell motilitycell transformationchemical reactiondepolymerizationdesigninsightlaser tweezermigrationmonomermouth squamous cell carcinomaneoplastic celloperationoptical trapspolymerizationreceptorrho GTP-Binding Proteinssensor
项目摘要
DESCRIPTION (provided by applicant): Most human malignancies are of epithelial origin. Transformed epithelial cells spread from the primary tumor site and invade surrounding tissues through the production of migratory structures (e.g., filopodia, invadopodia, and lamellapodia). The relative abundance of migratory structures is correlated with the metastatic potential of tumor cells. Migratory structures form by remodeling actin at the leading edge of transformed epithelial cells. Growth factors (e.g., epidermal growth factor, EGF) initiate actin remodeling by targeting their receptors (e.g., epidermal growth factor receptor) on the plasma membrane of transformed cells. Although the EGF pathway is well characterized, we lack experimental evidence to quantify forces that contribute to migration, including adhesive traction, resistive viscous drag, and protrusive forces. This work will focus on protrusive forces that occur at the leading edge of a living cell. They arise when the chemical energy released upon actin polymerization produces a pushing force against the plasma membrane, driven by the greater concentration of monomeric actin in the solution relative to the biopolymer. When an actin bundle is attached to the plasma membrane, depolymerization of F-actin produces a pulling force on the membrane. This reverse chemical reaction is driven by a lower concentration of monomer in the bulk relative to the biopolymer. Experimental measurements of the magnitude and time course of the pushing force in living cells are lacking and there are no measurements of the pulling force arising from the depolymerization of F-actin. The goal of this work is to determine the time course and magnitude of the pushing and pulling forces at the fast-growing end of an F-actin bundle. We will use the membrane as a sensor to determine the force at the motor-level in cancer cells. We will stimulate transformed epithelial cells to form migratory structures by EGF or with active effectors within the EGF pathway. We will use optical tweezers to measure the force, fluorescence microscopy to image F- actin, and develop methodology to measure both simultaneously. This work will provide a functional model of the actin motor at a leading edge of transformed epithelial cells, and advance the field in understanding cell migration during the invasive stage of cancer by providing measurements of the protrusive force at one leading edge. It will provide a quantitative experimental method to investigate the transduction machinery of this chemical motor, and fundamental insight into the integrated operations of the cell membrane and actin motor. This work will provide a basis to design force sensors for applications in nanotechnology.
描述(由申请方提供):大多数人类恶性肿瘤是上皮来源的。转化的上皮细胞从原发肿瘤部位扩散并通过产生迁移结构(例如,丝状伪足、内陷伪足和板状伪足)。迁移结构的相对丰度与肿瘤细胞的转移潜力相关。迁移结构通过在转化的上皮细胞的前缘重塑肌动蛋白而形成。生长因子(例如,表皮生长因子,EGF)通过靶向它们的受体(例如,表皮生长因子受体)。虽然表皮生长因子途径是很好的特点,我们缺乏实验证据来量化的力量,有助于迁移,包括粘附牵引力,粘性阻力,和膨胀力。这项工作将集中在一个活细胞的前沿发生的冲击力。当肌动蛋白聚合时释放的化学能产生对质膜的推力时,它们就会出现,这是由溶液中单体肌动蛋白相对于生物聚合物的浓度更高所驱动的。当肌动蛋白束附着在质膜上时,F-肌动蛋白的解聚在膜上产生拉力。这种逆化学反应是由本体中相对于生物聚合物较低浓度的单体驱动的。缺乏对活细胞中推力的大小和时间过程的实验测量,也没有对F-肌动蛋白解聚产生的拉力的测量。这项工作的目标是确定的时间过程和大小的推动力和拉力的快速增长结束的F-肌动蛋白束。我们将使用膜作为传感器来确定癌细胞中运动水平的力。我们将通过EGF或EGF途径中的活性效应物刺激转化的上皮细胞形成迁移结构。我们将使用光镊来测量力,荧光显微镜来成像F-肌动蛋白,并开发同时测量两者的方法。这项工作将提供一个功能模型的肌动蛋白电机在转化的上皮细胞的前沿,并推进该领域的理解细胞迁移在癌症的侵袭性阶段,通过提供测量的压力在一个前沿。这将提供一个定量的实验方法来研究这种化学马达的转导机制,并从根本上了解细胞膜和肌动蛋白马达的整合运作。这项工作将提供一个基础,设计力传感器在纳米技术的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brenda Frances Farrell其他文献
Brenda Frances Farrell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brenda Frances Farrell', 18)}}的其他基金
Curation and management of electrophysiological data obtained form outer hair cells isolated from Cavia Porcellus
从豚鼠外毛细胞中获得的电生理数据的整理和管理
- 批准号:
9111391 - 财政年份:1990
- 资助金额:
$ 17.02万 - 项目类别:
相似海外基金
I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
- 批准号:
2409620 - 财政年份:2024
- 资助金额:
$ 17.02万 - 项目类别:
Standard Grant
Architectural design of active adhesives
活性粘合剂的结构设计
- 批准号:
2403716 - 财政年份:2024
- 资助金额:
$ 17.02万 - 项目类别:
Standard Grant
Design of non-swellable adhesives for brain surgery using cyclodextrin inclusion polymer
使用环糊精包合物聚合物脑外科不可溶胀粘合剂的设计
- 批准号:
23H01718 - 财政年份:2023
- 资助金额:
$ 17.02万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Meta-material adhesives for improved performance and functionalisation of bondlines
超材料粘合剂可提高粘合层的性能和功能化
- 批准号:
EP/W019450/1 - 财政年份:2023
- 资助金额:
$ 17.02万 - 项目类别:
Fellowship
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
- 批准号:
10741660 - 财政年份:2023
- 资助金额:
$ 17.02万 - 项目类别:
DMREF: Accelerating the Design of Adhesives with Nanoscale Control of Thermomechanical Properties
DMREF:通过热机械性能的纳米级控制加速粘合剂的设计
- 批准号:
2323317 - 财政年份:2023
- 资助金额:
$ 17.02万 - 项目类别:
Continuing Grant
Mag-Cure: A novel method for magnetically induced bonding and de-bonding of thermoset adhesives in the Automotive Industry
Mag-Cure:汽车行业中热固性粘合剂磁感应粘合和脱粘的新方法
- 批准号:
10062336 - 财政年份:2023
- 资助金额:
$ 17.02万 - 项目类别:
Collaborative R&D
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
- 批准号:
10677869 - 财政年份:2022
- 资助金额:
$ 17.02万 - 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
- 批准号:
10746743 - 财政年份:2022
- 资助金额:
$ 17.02万 - 项目类别:
Enhanced bio-production of difficult to make peptide ingredients for specialty adhesives and personal care
增强用于特种粘合剂和个人护理品的难以制造的肽成分的生物生产
- 批准号:
10021363 - 财政年份:2022
- 资助金额:
$ 17.02万 - 项目类别:
Investment Accelerator














{{item.name}}会员




