Force Sensing with Nanotubes
用纳米管进行力传感
基本信息
- 批准号:8191774
- 负责人:
- 金额:$ 20.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:ActinsAdhesivesAdvanced DevelopmentBindingBiopolymersBreast CarcinomaCarcinomaCell membraneCellsCharacteristicsChemicalsDataDiagnostic Neoplasm StagingEmbryonic DevelopmentEpidermal Growth FactorEpidermal Growth Factor ReceptorEpithelialEpithelial CellsF-ActinFilamentFilopodiaFluorescenceFluorescence MicroscopyFree EnergyGoalsGrowth FactorGrowth and Development functionHumanImageImmune responseInvadedLengthLifeMalignant NeoplasmsMammalian CellMeasurableMeasurementMeasuresMechanicsMediatingMembraneMethodologyMethodsMicroscopyModelingMolecularMonitorMotorMovementNanotechnologyNanotubesNatural regenerationNeoplasm MetastasisOrganismPathway interactionsPlayPreparationPrimary NeoplasmProductionProteinsReactionRelative (related person)Research TechnicsRoleSiteSolutionsStagingStructureTemperatureTimeTissuesTongueTractionTubeWorkWound Healingbasecancer cellcell growthcell motilitycell transformationchemical reactiondepolymerizationdesigninsightlaser tweezermigrationmonomermouth squamous cell carcinomaneoplastic celloperationoptical trapspolymerizationreceptorrho GTP-Binding Proteinssensor
项目摘要
DESCRIPTION (provided by applicant): Most human malignancies are of epithelial origin. Transformed epithelial cells spread from the primary tumor site and invade surrounding tissues through the production of migratory structures (e.g., filopodia, invadopodia, and lamellapodia). The relative abundance of migratory structures is correlated with the metastatic potential of tumor cells. Migratory structures form by remodeling actin at the leading edge of transformed epithelial cells. Growth factors (e.g., epidermal growth factor, EGF) initiate actin remodeling by targeting their receptors (e.g., epidermal growth factor receptor) on the plasma membrane of transformed cells. Although the EGF pathway is well characterized, we lack experimental evidence to quantify forces that contribute to migration, including adhesive traction, resistive viscous drag, and protrusive forces. This work will focus on protrusive forces that occur at the leading edge of a living cell. They arise when the chemical energy released upon actin polymerization produces a pushing force against the plasma membrane, driven by the greater concentration of monomeric actin in the solution relative to the biopolymer. When an actin bundle is attached to the plasma membrane, depolymerization of F-actin produces a pulling force on the membrane. This reverse chemical reaction is driven by a lower concentration of monomer in the bulk relative to the biopolymer. Experimental measurements of the magnitude and time course of the pushing force in living cells are lacking and there are no measurements of the pulling force arising from the depolymerization of F-actin. The goal of this work is to determine the time course and magnitude of the pushing and pulling forces at the fast-growing end of an F-actin bundle. We will use the membrane as a sensor to determine the force at the motor-level in cancer cells. We will stimulate transformed epithelial cells to form migratory structures by EGF or with active effectors within the EGF pathway. We will use optical tweezers to measure the force, fluorescence microscopy to image F- actin, and develop methodology to measure both simultaneously. This work will provide a functional model of the actin motor at a leading edge of transformed epithelial cells, and advance the field in understanding cell migration during the invasive stage of cancer by providing measurements of the protrusive force at one leading edge. It will provide a quantitative experimental method to investigate the transduction machinery of this chemical motor, and fundamental insight into the integrated operations of the cell membrane and actin motor. This work will provide a basis to design force sensors for applications in nanotechnology.
PUBLIC HEALTH RELEVANCE: This study will help us to better understand specific roles of F-actin, a key protein in all mammalian cells. This protein plays an important role in cell growth and development. It has a significant role during the invasive stage of many aggressive cancers. The research techniques will advance the development of bio-molecular sensors for applications in nanotechnology.
描述(由申请人提供):大多数人类恶性肿瘤都是上皮起源的。转化的上皮细胞从原发肿瘤部位扩散并通过产生迁移结构(例如丝状伪足、侵入伪足和板状伪足)侵入周围组织。迁移结构的相对丰度与肿瘤细胞的转移潜力相关。迁移结构是通过在转化的上皮细胞前缘重塑肌动蛋白而形成的。生长因子(例如表皮生长因子,EGF)通过靶向转化细胞质膜上的受体(例如表皮生长因子受体)来启动肌动蛋白重塑。尽管 EGF 途径已得到很好的表征,但我们缺乏实验证据来量化有助于迁移的力,包括粘附牵引、阻力粘性阻力和突出力。这项工作将重点关注活细胞前缘发生的突出力。当肌动蛋白聚合时释放的化学能产生对质膜的推力时,它们就会出现,这是由溶液中相对于生物聚合物浓度更高的单体肌动蛋白驱动的。当肌动蛋白束附着在质膜上时,F-肌动蛋白的解聚会对膜产生拉力。这种逆化学反应是由本体中相对于生物聚合物较低浓度的单体驱动的。缺乏对活细胞中推力大小和时间过程的实验测量,也没有对 F-肌动蛋白解聚产生的拉力进行测量。这项工作的目标是确定 F-肌动蛋白束快速生长端推力和拉力的时间过程和大小。我们将使用膜作为传感器来确定癌细胞运动水平的力。我们将通过 EGF 或 EGF 通路内的活性效应器刺激转化的上皮细胞形成迁移结构。我们将使用光镊测量力,使用荧光显微镜对 F-肌动蛋白成像,并开发同时测量两者的方法。这项工作将提供转化上皮细胞前缘肌动蛋白运动的功能模型,并通过提供一个前缘突出力的测量来推进理解癌症侵袭阶段细胞迁移的领域。它将提供一种定量实验方法来研究这种化学马达的转导机制,并为细胞膜和肌动蛋白马达的集成操作提供基本见解。这项工作将为设计纳米技术应用的力传感器提供基础。
公共健康相关性:这项研究将帮助我们更好地了解 F-肌动蛋白(所有哺乳动物细胞中的一种关键蛋白)的具体作用。这种蛋白质在细胞生长和发育中起着重要作用。它在许多侵袭性癌症的侵袭阶段发挥着重要作用。该研究技术将推动纳米技术应用生物分子传感器的开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brenda Frances Farrell其他文献
Brenda Frances Farrell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brenda Frances Farrell', 18)}}的其他基金
Curation and management of electrophysiological data obtained form outer hair cells isolated from Cavia Porcellus
从豚鼠外毛细胞中获得的电生理数据的整理和管理
- 批准号:
9111391 - 财政年份:1990
- 资助金额:
$ 20.42万 - 项目类别:
相似海外基金
I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
- 批准号:
2409620 - 财政年份:2024
- 资助金额:
$ 20.42万 - 项目类别:
Standard Grant
Architectural design of active adhesives
活性粘合剂的结构设计
- 批准号:
2403716 - 财政年份:2024
- 资助金额:
$ 20.42万 - 项目类别:
Standard Grant
Design of non-swellable adhesives for brain surgery using cyclodextrin inclusion polymer
使用环糊精包合物聚合物脑外科不可溶胀粘合剂的设计
- 批准号:
23H01718 - 财政年份:2023
- 资助金额:
$ 20.42万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Meta-material adhesives for improved performance and functionalisation of bondlines
超材料粘合剂可提高粘合层的性能和功能化
- 批准号:
EP/W019450/1 - 财政年份:2023
- 资助金额:
$ 20.42万 - 项目类别:
Fellowship
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
- 批准号:
10741660 - 财政年份:2023
- 资助金额:
$ 20.42万 - 项目类别:
DMREF: Accelerating the Design of Adhesives with Nanoscale Control of Thermomechanical Properties
DMREF:通过热机械性能的纳米级控制加速粘合剂的设计
- 批准号:
2323317 - 财政年份:2023
- 资助金额:
$ 20.42万 - 项目类别:
Continuing Grant
Mag-Cure: A novel method for magnetically induced bonding and de-bonding of thermoset adhesives in the Automotive Industry
Mag-Cure:汽车行业中热固性粘合剂磁感应粘合和脱粘的新方法
- 批准号:
10062336 - 财政年份:2023
- 资助金额:
$ 20.42万 - 项目类别:
Collaborative R&D
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
- 批准号:
10677869 - 财政年份:2022
- 资助金额:
$ 20.42万 - 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
- 批准号:
10746743 - 财政年份:2022
- 资助金额:
$ 20.42万 - 项目类别:
Enhanced bio-production of difficult to make peptide ingredients for specialty adhesives and personal care
增强用于特种粘合剂和个人护理品的难以制造的肽成分的生物生产
- 批准号:
10021363 - 财政年份:2022
- 资助金额:
$ 20.42万 - 项目类别:
Investment Accelerator














{{item.name}}会员




