Structure and Inhibition of the Conjugative DNA Relaxase-Helicase
接合性 DNA 松弛酶-解旋酶的结构和抑制
基本信息
- 批准号:8274770
- 负责人:
- 金额:$ 35.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-06-01 至 2014-05-31
- 项目状态:已结题
- 来源:
- 关键词:AmericanAntibiotic ResistanceBacteriaBacterial InfectionsBiological AssayBiologyC-terminalC-terminal binding proteinCatalytic DomainCell SurvivalCellsChemicalsClinicalColon CarcinomaComplexDNADNA relaxaseDevelopmentEnzymesEscherichia coliF FactorFertilityGenesGenetic ConjugationGoalsHealthHeartHospitalsHumanIn VitroInfectionMalignant neoplasm of ovaryMalignant neoplasm of prostateMediatingMethodsMicrobeMolecularMovementN-terminalNosocomial InfectionsNucleoproteinsOsteoporosisPharmaceutical PreparationsPhosphotyrosinePlasmidsPlayPopulationPrevalenceProcessProtein Binding DomainProteinsResistanceRoleRouteSalmonellaSiteStructureSystemTestingbacterial resistancebasedesignhelicaseinhibitor/antagonistinsightkillingsmalignant breast neoplasmmortalitynovelplasmid DNApreventpurgeresistant strainsmall moleculetool
项目摘要
PROJECT SUMMARY
Antibiotic resistant bacterial infections kill more Americans each year than colon, prostate and ovarian
cancer combined. Conjugative DNA transfer generates most of the antibiotic resistant strains of bacteria that
infect humans. We have recently shown that the relaxase enzyme essential to this DNA transfer process can
be inhibited with nanomolar efficacy using a variety of small molecules, including some osteoporosis drugs.
Relaxase inhibition prevents DNA transfer and selectively kills antibiotic resistant bacteria. The relaxase of the
conjugative F plasmid is part of the large multifunctional TraI protein that also contains highly efficient helicase
and putative protein-binding C-terminal domains. The relaxase, helicase and C-terminal regions of TraI are all
essential for conjugative DNA transfer. This proposal focuses on extending our preliminary structural and
chemical biology studies with the goals of understanding the molecular basis of DNA transfer and developing
small molecules capable of killing antibiotic resistant bacteria. This project will accomplish four specific aims:
1. Elucidate crystal structures of a range of relaxase-inhibitor complexes.
2. Discover and synthesize new relaxase inhibitors and test their impact on conjugation and bacterial survival.
3. Unravel the role the TraI C-terminal domain plays in conjugative transfer.
4. Examine the structure, function and inhibition of the TraI conjugative helicase region.
Results from these studies will provide detailed mechanistic insights into one of the first DNA
manipulation systems discovered. In addition, because conserved relaxases are present in a range of
pathogenic microbes, our results may provide a novel method to target the most dangerous infectious bacteria
those that are antibiotic resistant and are capable of spreading their resistance to neighboring cells. PROJECT NARRATIVE
Conjugative DNA transfer, the primary route by which antibiotic resistance genes spread through
bacterial populations, is initiated and driven by DNA relaxase and helicase enzymes. We have recently shown
that conjugative relaxases can be inhibited with nanomolar efficacy, and that this inhibition prevents DNA
conjugation and selectively kills antibiotic resistant bacteria. This project will extend our preliminary structural
and chemical biology discoveries with the goal of understanding the molecular basis of DNA transfer and
developing drugs that potently kill antibiotic resistant bacteria.
项目摘要
每年死于耐抗生素细菌感染的美国人比死于结肠癌、前列腺癌和卵巢癌的美国人还多
癌症综合接合DNA转移产生大多数抗生素抗性细菌菌株,
感染人类我们最近已经证明,这种DNA转移过程所必需的松弛酶可以
使用各种小分子,包括一些骨质疏松症药物,以纳摩尔的功效抑制。
松弛酶抑制可阻止DNA转移并选择性杀死抗生素耐药细菌。的放松
接合F质粒是大的多功能TraI蛋白的一部分,也含有高效解旋酶
和推定的蛋白质结合C末端结构域。TraI的松弛酶、解旋酶和C末端区域都是
是接合DNA转移所必需的。这项建议的重点是扩大我们的初步结构和
化学生物学研究的目的是了解DNA转移的分子基础和发展
能够杀死耐抗生素细菌的小分子。该项目将实现四个具体目标:
1.阐明一系列松弛酶抑制剂复合物的晶体结构。
2.发现和合成新的松弛酶抑制剂,并测试它们对接合和细菌存活的影响。
3.揭示TraI C端结构域在接合转移中的作用。
4.检查TraI接合解旋酶区域的结构、功能和抑制。
这些研究的结果将提供详细的机制见解之一的第一个DNA
操纵系统被发现此外,由于保守的松弛酶存在于一系列的细胞中,
病原微生物,我们的研究结果可能提供一种新的方法,以针对最危险的感染性细菌
那些具有抗生素抗性并能够将其抗性传播到邻近细胞的细胞。项目叙述
接合DNA转移,抗生素耐药基因传播的主要途径
细菌种群的DNA松弛酶和解旋酶启动和驱动。我们最近的研究表明
接合松弛酶可以以纳摩尔效力被抑制,并且这种抑制防止DNA
结合并选择性地杀死抗生素抗性细菌。该项目将扩大我们的初步结构
和化学生物学发现,目标是了解DNA转移的分子基础,
开发出能有效杀死耐抗生素细菌的药物。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A novel fold in the TraI relaxase-helicase c-terminal domain is essential for conjugative DNA transfer.
- DOI:10.1016/j.jmb.2008.12.057
- 发表时间:2009-02-20
- 期刊:
- 影响因子:5.6
- 作者:Guogas, Laura M.;Kennedy, Sarah A.;Lee, Jin-Hyup;Redinbo, Matthew R.
- 通讯作者:Redinbo, Matthew R.
Pseudomonas aeruginosa PilY1 binds integrin in an RGD- and calcium-dependent manner.
- DOI:10.1371/journal.pone.0029629
- 发表时间:2011
- 期刊:
- 影响因子:3.7
- 作者:Johnson MD;Garrett CK;Bond JE;Coggan KA;Wolfgang MC;Redinbo MR
- 通讯作者:Redinbo MR
Turnover-dependent covalent inactivation of Staphylococcus aureus coenzyme A-disulfide reductase by coenzyme A-mimetics: mechanistic and structural insights.
辅酶 A-模拟物对金黄色葡萄球菌辅酶 A-二硫键还原酶的周转依赖性共价失活:机制和结构见解。
- DOI:10.1021/bi301026c
- 发表时间:2012
- 期刊:
- 影响因子:2.9
- 作者:Wallace,BretD;Edwards,JonathanS;Wallen,JamieR;Moolman,WesselJA;vanderWesthuyzen,Renier;Strauss,Erick;Redinbo,MatthewR;Claiborne,Al
- 通讯作者:Claiborne,Al
Crystal structure of the plant epigenetic protein arginine methyltransferase 10.
植物表观遗传蛋白精氨酸转移酶10的晶体结构10。
- DOI:10.1016/j.jmb.2011.09.040
- 发表时间:2011-11-18
- 期刊:
- 影响因子:5.6
- 作者:Cheng, Yuan;Frazier, Monica;Lu, Falong;Cao, Xiaofeng;Redinbo, Matthew R.
- 通讯作者:Redinbo, Matthew R.
Processing of Nonconjugative Resistance Plasmids by Conjugation Nicking Enzyme of Staphylococci.
用葡萄球菌的接合切口酶加工非接合抗性质粒。
- DOI:10.1128/jb.00832-15
- 发表时间:2016
- 期刊:
- 影响因子:3.2
- 作者:Pollet,RebeccaM;Ingle,JamesD;Hymes,JeffP;Eakes,ThomasC;Eto,KarinaYui;Kwong,StephenM;Ramsay,JoshuaP;Firth,Neville;Redinbo,MatthewR
- 通讯作者:Redinbo,MatthewR
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew R Redinbo其他文献
Matthew R Redinbo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew R Redinbo', 18)}}的其他基金
Understanding and Controlling Drug Metabolism by the Gut Microbiota to Improve Human Health
了解和控制肠道微生物群的药物代谢以改善人类健康
- 批准号:
10401799 - 财政年份:2020
- 资助金额:
$ 35.55万 - 项目类别:
Understanding and Controlling Drug Metabolism by the Gut Microbiota to Improve Human Health
了解和控制肠道微生物群的药物代谢以改善人类健康
- 批准号:
10616518 - 财政年份:2020
- 资助金额:
$ 35.55万 - 项目类别:
Structural Basis for Hormone and Neurotransmitter Processing by Gut Microbial Enzymes
肠道微生物酶处理激素和神经递质的结构基础
- 批准号:
10438768 - 财政年份:2019
- 资助金额:
$ 35.55万 - 项目类别:
Structural Basis for Hormone and Neurotransmitter Processing by Gut Microbial Enzymes
肠道微生物酶处理激素和神经递质的结构基础
- 批准号:
10205109 - 财政年份:2019
- 资助金额:
$ 35.55万 - 项目类别:
Structural Basis for Hormone and Neurotransmitter Processing by Gut Microbial Enzymes
肠道微生物酶处理激素和神经递质的结构基础
- 批准号:
10019410 - 财政年份:2019
- 资助金额:
$ 35.55万 - 项目类别:
Improving CPT-11 Efficacy Using Structural and Chemical Biology
利用结构生物学和化学生物学提高 CPT-11 功效
- 批准号:
8817985 - 财政年份:2014
- 资助金额:
$ 35.55万 - 项目类别:
Improving CPT-11 Efficacy Using Structural and Chemical Biology
利用结构生物学和化学生物学提高 CPT-11 功效
- 批准号:
9326146 - 财政年份:2014
- 资助金额:
$ 35.55万 - 项目类别:
Improving CPT-11 Efficacy Using Structural and Chemical Biology
利用结构生物学和化学生物学提高 CPT-11 功效
- 批准号:
8931901 - 财政年份:2014
- 资助金额:
$ 35.55万 - 项目类别:
Improving CPT-11 Efficacy Using Structural and Chemical Biology
利用结构生物学和化学生物学提高 CPT-11 功效
- 批准号:
9128581 - 财政年份:2014
- 资助金额:
$ 35.55万 - 项目类别:
相似海外基金
The spread of antibiotic resistance in bacteria-plasmid networks
抗生素耐药性在细菌-质粒网络中的传播
- 批准号:
BB/X010473/1 - 财政年份:2023
- 资助金额:
$ 35.55万 - 项目类别:
Fellowship
Development of a technical strategy for the source control of antibiotic resistant bacteria and antibiotic resistance genes based on one-health approach
基于单一健康方法制定抗生素耐药菌和抗生素耐药基因源头控制技术策略
- 批准号:
23H00536 - 财政年份:2023
- 资助金额:
$ 35.55万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Molecular Mechanism Of DNA Processing For Antibiotic Resistance Gene Transfer In Bacteria
细菌抗生素抗性基因转移 DNA 加工的分子机制
- 批准号:
BB/X016900/1 - 财政年份:2023
- 资助金额:
$ 35.55万 - 项目类别:
Research Grant
Task E13: Development of Interventional Agents for Antibiotic Resistance Bacteria
任务E13:抗生素耐药性细菌介入制剂的开发
- 批准号:
10933758 - 财政年份:2023
- 资助金额:
$ 35.55万 - 项目类别:
Southeast Center for Agricultural Health and Injury Prevention: Enteric bacteria, antibiotic resistance and farm worker health on livestock farms
东南部农业健康与伤害预防中心:畜牧场的肠道细菌、抗生素耐药性和农场工人健康
- 批准号:
10909779 - 财政年份:2022
- 资助金额:
$ 35.55万 - 项目类别:
SBIR Phase I: Rapid detection of blood-borne bacteria and determination of antibiotic resistance
SBIR 第一阶段:快速检测血源性细菌并确定抗生素耐药性
- 批准号:
2136428 - 财政年份:2021
- 资助金额:
$ 35.55万 - 项目类别:
Standard Grant
The interplay between cell envelope protein homeostasis and antibiotic resistance in Gram-negative bacteria
革兰氏阴性菌细胞包膜蛋白稳态与抗生素耐药性之间的相互作用
- 批准号:
10366424 - 财政年份:2021
- 资助金额:
$ 35.55万 - 项目类别:
The interplay between cell envelope protein homeostasis and antibiotic resistance in Gram-negative bacteria
革兰氏阴性菌细胞包膜蛋白稳态与抗生素耐药性之间的相互作用
- 批准号:
10514634 - 财政年份:2021
- 资助金额:
$ 35.55万 - 项目类别:
Novel crosstalk between host and bacteria: Elucidation of antibiotic resistance mechanisms in bacteria induced by noradrenaline
宿主和细菌之间的新串扰:阐明去甲肾上腺素诱导的细菌抗生素耐药机制
- 批准号:
20K17473 - 财政年份:2020
- 资助金额:
$ 35.55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Using genome data from highly recombinant bacteria of the genus Neisseria to examine bacterial population structure, antibiotic resistance, and geneti
使用奈瑟氏球菌属高度重组细菌的基因组数据来检查细菌种群结构、抗生素耐药性和遗传学
- 批准号:
2270225 - 财政年份:2019
- 资助金额:
$ 35.55万 - 项目类别:
Studentship