Femtosecond nano-crystallography of membrane proteins
膜蛋白的飞秒纳米晶体学
基本信息
- 批准号:8322064
- 负责人:
- 金额:$ 29.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-30 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:BindingBiological ModelsCell CommunicationCellsCollectionComplexCrystallographyDataData CollectionData SetDevelopmentDrug Delivery SystemsEvaluationFilmFutureGenerationsGrowthHumanImageIndividualLasersLifeMembrane ProteinsMetalsMethodsMolecularMolecular WeightMothersNatureNitratesOpticsOxidation-ReductionPatternPhasePhotosynthesisPhotosystem IPhysicsPhysiologic pulsePowder DiffractionProcessProteinsRadiationRadiation induced damageResearch ActivityRespirationRoentgen RaysScreening procedureSiliconSodium ChlorideSolventsSourceSteamStreamStructureSynchrotronsTechniquesTemperatureTimeWorkX ray diffraction analysisX-Ray CrystallographyX-Ray Diffractionbasecofactorcryogenicsdaltondistilled alcoholic beveragefallsindexingmethod developmentnanonanocrystalnoveloperationprotein structureresearch study
项目摘要
Summary
The aim of this proposal is to develop the method of femtosecond (fs) crystallography for
the structure determination of membrane proteins, where X-ray structure analysis is based
on hundreds of thousands of X-ray diffraction patterns from a steam of fully hydrated
nano/ microcrystals of membrane proteins, collected using the new high energy fs X-ray
laser at LCLS in Stanford. The LCLS started its operation in the fall of 2009 and provides
fs-pulses of an intensity that exceeds third-generation synchrotron sources by 12 orders of
magnitude.
Membrane proteins are of extreme importance in all living cells as they catalyze vital
functions like respiration, photosynthesis, transport, and cell communication. 30% of all
human proteins are membrane proteins and more than 60% of all drugs are targeted to
membrane proteins. Despite their extreme importance, the understanding of their
molecular function is hampered by the lack of structure information; while more than
60,000 structures of soluble proteins have been solved by X-ray crystallography and
NMR, less than 250 different membrane protein structures have so far been determined.
The determination of membrane protein structures solved to date often involved a time-
consuming process where it took years (or sometimes even decades) to grow large, well-
ordered crystals suitable for X-ray structure determination. Furthermore, X-ray-induced
radiation damage is a major problem for many membrane protein crystals, especially
when they contain metals and/or redox active cofactors. The X-ray-induced radiation
damage imposes a limitation for X-ray diffraction on microcrystals, even under cryogenic
conditions. This proposal is based on the first proof of principle for fs-
nanocrystallography by the collection of 3 million diffraction patterns on nano/
microcrystals of the membrane protein Photosystem I in December 2009 at LCLS, using
fs X-ray pulses. Photosystem I, which served as the model system, has a molecular
weight of 1,056,000 Daltons and consists of 36 proteins and 381 cofactors that are non-
covalently bound, making Photosystem I one of the most complex membrane proteins
that has been crystallized to date. These experiments have already proven that the
"diffraction before destroy principle," first shown in 2006 for an image etched into a
silicon-nitrate film, (Chapman 2006, Nature Physics), can be directly extended to one of
the most fragile protein crystals that exists to date, which contain 78% solvent and only 4
salt bridges involved in crystal contact. This proposal aims to open an exciting new
avenue for membrane protein crystallography, where hundreds of thousands of
diffraction patterns can be collected in a time frame of minutes using fully hydrated nano/
microcrystals in their mother liquor, at room temperature, with X-ray laser pulses that are
so short that X-ray-induced radiation damage only starts after data collection. The new
method has also the potential to obtain structures of excited states of the molecules by
combining optical laser excitation with fs X-ray data collection in the future. As the
proposal breaks into new unexplored grounds, it involves method developments ranging
from the screening for the best microcrystals and the defined growth of microcrystals to
new method developments for high throughput data screening, data evaluation and phase
determination.
总结
本提案的目的是发展飞秒(fs)晶体学方法,
膜蛋白的结构测定,其中X射线结构分析是基于
在数十万个X射线衍射图上,
膜蛋白的纳米/微晶,使用新的高能fs X射线收集
在斯坦福大学的LCLS工作。LCLS于2009年秋季开始运营,
飞秒脉冲的强度超过第三代同步辐射源的12个数量级
大小
膜蛋白在所有活细胞中都是极其重要的,因为它们催化重要的
像呼吸作用、光合作用、运输和细胞通讯。30%的
人类蛋白质是膜蛋白,超过60%的药物靶向于
膜蛋白尽管它们极其重要,但对它们的理解
分子功能受到结构信息缺乏的阻碍;而超过
6万种可溶性蛋白质的结构已被X射线晶体学解析,
根据核磁共振谱,到目前为止已经确定了不到250种不同的膜蛋白结构。
迄今为止,膜蛋白结构的确定通常涉及一个时间-
消费过程中,它花了几年(有时甚至几十年)的增长大,以及-
适合于X射线结构测定的有序晶体。此外,X射线诱导的
辐射损伤是许多膜蛋白晶体的主要问题,
当它们含有金属和/或氧化还原活性辅因子时。X射线引起的辐射
即使在低温下,损伤也限制了微晶的X射线衍射
条件这个建议是基于第一次证明原则的fs-
通过在纳米/纳米晶体上收集300万个衍射图案,
2009年12月在LCLS,使用
fs X射线脉冲。作为模型系统的光系统I具有一个分子
分子量为1,056,000道尔顿,由36种蛋白质和381种辅助因子组成,
共价结合,使光系统I成为最复杂的膜蛋白之一
迄今为止已经被结晶化了。这些实验已经证明,
“破坏前的衍射原理”,首次出现在2006年的一个图像蚀刻成一个
硝酸硅薄膜(Chapman 2006,Nature Physics),可以直接扩展到
迄今为止存在的最脆弱的蛋白质晶体,其中含有78%的溶剂和只有4
盐桥参与晶体接触。该提案旨在开启一个令人兴奋的新
膜蛋白晶体学的途径,其中数十万个
衍射图案可以在几分钟的时间范围内使用完全水合的纳米/
微晶在其母液中,在室温下,用X射线激光脉冲,
短到X射线引起的辐射损伤仅在数据收集之后开始。新
方法也有可能获得分子的激发态结构,
将光学激光激发与飞秒X射线数据采集相结合。为
该提案打破了新的未探索的领域,它涉及方法的发展,
从筛选最好的微晶和确定微晶的生长,
用于高通量数据筛选、数据评估和分阶段的新方法开发
保持战略定力
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PETRA FROMME其他文献
PETRA FROMME的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PETRA FROMME', 18)}}的其他基金
Center for Membrane Proteins in Infectious Diseases (MPID)
传染病膜蛋白中心 (MPID)
- 批准号:
8692880 - 财政年份:2010
- 资助金额:
$ 29.7万 - 项目类别:
Dynamics of membrane proteins unraveled by time-resolved serial crystallography
时间分辨系列晶体学揭示膜蛋白的动力学
- 批准号:
10657320 - 财政年份:2010
- 资助金额:
$ 29.7万 - 项目类别:
Femtosecond nano-crystallography of membrane proteins
膜蛋白的飞秒纳米晶体学
- 批准号:
8027697 - 财政年份:2010
- 资助金额:
$ 29.7万 - 项目类别:
Femtosecond nano-crystallography of membrane proteins
膜蛋白的飞秒纳米晶体学
- 批准号:
9055725 - 财政年份:2010
- 资助金额:
$ 29.7万 - 项目类别:
Center for Membrane Proteins in Infectious Diseases (MPID)
传染病膜蛋白中心 (MPID)
- 批准号:
8741167 - 财政年份:2010
- 资助金额:
$ 29.7万 - 项目类别:
Dynamics of membrane proteins unraveled by time-resolved serial crystallography
时间分辨系列晶体学揭示膜蛋白的动力学
- 批准号:
9887557 - 财政年份:2010
- 资助金额:
$ 29.7万 - 项目类别:
Center for the Rational Design of Membrane Protein Crystallography
膜蛋白晶体学合理设计中心
- 批准号:
8152487 - 财政年份:2010
- 资助金额:
$ 29.7万 - 项目类别:
Dynamics of membrane proteins unraveled by time-resolved serial crystallography
时间分辨系列晶体学揭示膜蛋白的动力学
- 批准号:
10334532 - 财政年份:2010
- 资助金额:
$ 29.7万 - 项目类别:
Femtosecond nano-crystallography of membrane proteins
膜蛋白的飞秒纳米晶体学
- 批准号:
9304242 - 财政年份:2010
- 资助金额:
$ 29.7万 - 项目类别:
Femtosecond nano-crystallography of membrane proteins
膜蛋白的飞秒纳米晶体学
- 批准号:
8818297 - 财政年份:2010
- 资助金额:
$ 29.7万 - 项目类别:
相似海外基金
Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
- 批准号:
2306962 - 财政年份:2023
- 资助金额:
$ 29.7万 - 项目类别:
Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 29.7万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2022
- 资助金额:
$ 29.7万 - 项目类别:
Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
- 批准号:
DP220102872 - 财政年份:2022
- 资助金额:
$ 29.7万 - 项目类别:
Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2021
- 资助金额:
$ 29.7万 - 项目类别:
Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2020
- 资助金额:
$ 29.7万 - 项目类别:
Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
- 批准号:
2004877 - 财政年份:2020
- 资助金额:
$ 29.7万 - 项目类别:
Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9899988 - 财政年份:2019
- 资助金额:
$ 29.7万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2019
- 资助金额:
$ 29.7万 - 项目类别:
Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9753458 - 财政年份:2019
- 资助金额:
$ 29.7万 - 项目类别:














{{item.name}}会员




