MRI-based mapping of regional genomic diversity in Glioblastoma
基于 MRI 的胶质母细胞瘤区域基因组多样性图谱
基本信息
- 批准号:8490147
- 负责人:
- 金额:$ 30.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-03-01 至 2015-02-28
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdjuvant TherapyAlgorithmsAreaBiopsyBlood - brain barrier anatomyBrainClassificationClinicalCollaborationsDataDevelopmentDiagnosisDiagnosticDiffusionDrug Delivery SystemsExcisionExhibitsFutureGeneticGenetic VariationGenomicsGlioblastomaHeterogeneityImageIndividualInstitutionInstitutional Review BoardsLocationMachine LearningMagnetic Resonance ImagingMapsMeasuresMethodologyMethodsMutationNecrosisOperative Surgical ProceduresOutcomePatient CarePatientsPerfusionPermeabilityPharmaceutical PreparationsPopulationPopulation HeterogeneityPredispositionPropertyProtocols documentationPublishingRadiationRadiation InjuriesRecurrenceRecurrent diseaseResearchResearch PersonnelResidual TumorsResistanceSamplingSelection for TreatmentsSystemTestingTextureTimeTissue SampleTissuesTumor Cell BiologyValidationVariantWarWorkangiogenesisbasechemotherapycohortcombinatorialcomparative genomic hybridizationfield studyimage processingimprovedkillingsnovelnovel strategiesoutcome forecastprognosticpublic health relevanceresponsetraittreatment responsetumortumor growthtumor progression
项目摘要
DESCRIPTION (provided by applicant): We propose to develop an image-based diagnostic system for Glioblastoma (GBM) that identifies the potential genetic underpinnings of treatment resistance within the zone where tumor almost always recurs. This should facilitate the delivery of individualized care for patients with GBM. Current therapy selection is formulaic and uniform for all patients and does not account for broad genetic diversity that contributes to treatment resistance and dismal prognosis. Specifically, each patient's GBM is uniquely heterogeneous and comprised of multiple distinct subclonal populations with differing susceptibilities to therapy This diversity causes tumors to respond non-uniformly to targeted therapy and allows resistant clones to repopulate as recurrent disease. Additionally, conventional MRI routinely guides surgical resection of enhancing tumor core, but leaves behind tumor populations within adjacent non-enhancing parenchyma, or brain around tumor (BAT). The BAT represents the primary target of adjuvant therapy because it harbors the residual tumor populations that nearly universally recur. Curating the genomic diversity within BAT should inform treatment selection, but this region is almost never biopsied because it is poorly evaluated on conventional MRI. Currently, there is no systematic method that addresses intratumoral heterogeneity to characterize the regional genomic diversity within BAT. To address this critical need, this exploratory proposal will develop and test a novel mapping system that integrates multi-parametric MRI with image-guided tissue analysis and machine learning (ML) algorithms to delineate regional genomic variations in GBM. This system uses conventional MRI to identify major tumoral subcomponents: enhancing core, BAT, and central necrosis. Within these subcomponents, advanced MRI (perfusion, diffusion, texture) will further characterize regional tumor properties (i.e., angiogenesis, permeability, invasion, and proliferation) that represent phenotypic expression of underlying genomic status. These MRI traits will guide stereotactic biopsies from distinct tumoral subregions to generate matched pairs of MRI and genomic data. An ML algorithm will incorporate these data to estimate regional genomic diversity throughout each tumor, including BAT areas that have not been surgically sampled. We have unified a multi-disciplinary team of investigators from institutions that have substantial and long-standing collaborations. Our group offers expertise in multiple fields of study that are necessary to accomplish the research aims, including: 1) image processing and analytics; 2) image-guided stereotactic surgery and coregistration; 3) development of machine learning (ML) methodology; and 4) comprehensive genomic interrogation and cell biology of tumor within BAT. If successful, the work proposed here should significantly impact how GBM patients are diagnosed and treated. This potentially improves clinical outcomes by enabling a paradigm shift from "one treatment fits all" to a mutations-based approach that selects combinatorial therapies targeting individual tumor populations.
描述(由申请人提供):我们建议开发一种基于图像的胶质母细胞瘤(GBM)诊断系统,该系统可识别肿瘤几乎总是复发的区域内治疗抗性的潜在遗传基础。这将有助于为GBM患者提供个性化护理。目前的治疗选择是公式化的,对所有患者都是统一的,没有考虑到广泛的遗传多样性,导致治疗抵抗和预后不良。具体而言,每个患者的GBM是独特的异质性,并且由对治疗具有不同亲和性的多个不同亚克隆群体组成。这种多样性导致肿瘤对靶向治疗的反应不均匀,并允许抗性克隆作为复发性疾病重新繁殖。此外,常规MRI常规指导增强肿瘤核心的手术切除,但在相邻的非增强实质或肿瘤周围脑(BAT)内留下肿瘤群。BAT是辅助治疗的主要靶点,因为它含有几乎普遍复发的残留肿瘤群体。在BAT中处理基因组多样性应该为治疗选择提供信息,但该区域几乎从未进行过活检,因为它在常规MRI上的评价很差。目前,还没有系统的方法,解决肿瘤内异质性的特点BAT内的区域基因组多样性。为了满足这一关键需求,该探索性提案将开发和测试一种新型映射系统,该系统将多参数MRI与图像引导的组织分析和机器学习(ML)算法相结合,以描绘GBM中的区域基因组变异。该系统使用常规MRI来识别主要的肿瘤亚组分:增强核心、BAT和中央坏死。在这些子组件中,高级MRI(灌注、扩散、纹理)将进一步表征局部肿瘤特性(即,血管生成、渗透性、侵袭和增殖),其代表潜在基因组状态的表型表达。这些MRI特征将指导来自不同肿瘤亚区域的立体定向活检,以生成匹配的MRI和基因组数据对。ML算法将结合这些数据来估计每个肿瘤的区域基因组多样性,包括尚未手术采样的BAT区域。我们已经统一了一个多学科的研究人员团队,这些研究人员来自具有实质性和长期合作关系的机构。我们的团队在多个研究领域提供专业知识,这些领域是实现研究目标所必需的,包括:1)图像处理和分析; 2)图像引导立体定向手术和配准; 3)机器学习(ML)方法的开发;以及4)BAT中肿瘤的全面基因组询问和细胞生物学。如果成功的话,这里提出的工作应该会显著影响GBM患者的诊断和治疗。这可能会通过实现从“一刀切”到基于突变的方法(选择针对个体肿瘤群体的组合疗法)的范式转变来改善临床结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leland Hu其他文献
Leland Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leland Hu', 18)}}的其他基金
Quantifying Multiscale Competitive Landscapes of Clonal Diversity in Glioblastoma
量化胶质母细胞瘤克隆多样性的多尺度竞争格局
- 批准号:
9895187 - 财政年份:2019
- 资助金额:
$ 30.53万 - 项目类别:
Quantifying Multiscale Competitive Landscapes of Clonal Diversity in Glioblastoma
量化胶质母细胞瘤克隆多样性的多尺度竞争格局
- 批准号:
10411429 - 财政年份:2017
- 资助金额:
$ 30.53万 - 项目类别:
Quantifying Multiscale Competitive Landscapes of Clonal Diversity in Glioblastoma
量化胶质母细胞瘤克隆多样性的多尺度竞争格局
- 批准号:
10005896 - 财政年份:2017
- 资助金额:
$ 30.53万 - 项目类别:
Quantifying Multiscale Competitive Landscapes of Clonal Diversity in Glioblastoma
量化胶质母细胞瘤克隆多样性的多尺度竞争格局
- 批准号:
9767744 - 财政年份:2017
- 资助金额:
$ 30.53万 - 项目类别:
Quantifying Multiscale Competitive Landscapes of Clonal Diversity in Glioblastoma
量化胶质母细胞瘤克隆多样性的多尺度竞争格局
- 批准号:
10226953 - 财政年份:2017
- 资助金额:
$ 30.53万 - 项目类别:
Quantifying Multiscale Competitive Landscapes of Clonal Diversity in Glioblastoma
量化胶质母细胞瘤克隆多样性的多尺度竞争格局
- 批准号:
9389124 - 财政年份:2017
- 资助金额:
$ 30.53万 - 项目类别:
MRI-based mapping of regional genomic diversity in Glioblastoma
基于 MRI 的胶质母细胞瘤区域基因组多样性图谱
- 批准号:
8620732 - 财政年份:2013
- 资助金额:
$ 30.53万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 30.53万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 30.53万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 30.53万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 30.53万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 30.53万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 30.53万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 30.53万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 30.53万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 30.53万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 30.53万 - 项目类别:
Research Grant