Quantifying Multiscale Competitive Landscapes of Clonal Diversity in Glioblastoma

量化胶质母细胞瘤克隆多样性的多尺度竞争格局

基本信息

  • 批准号:
    10005896
  • 负责人:
  • 金额:
    $ 95.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-12 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT Glioblastoma (GBM) exhibits profound intratumoral molecular heterogeneity that contributes to treatment resistance and poor survival. Specifically, each tumor comprises multiple molecularly-distinct subpopulations with different treatment sensitivities. This heterogeneity not only portends the pre-existence of resistant molecular subpopulations, but also the communications between neighboring subpopulations that further modulate tumorigenicity and resistance. In fact, a minority tumor subpopulation with EGFRvIII mutation has been shown to potentiate a majority subpopulation with wild-type EGFR to increase tumor growth, cell survival, and drug resistance. This type of cooperativity presents clear implications for improving GBM treatment. Yet compared to other tumor types, the interactions in GBM remain critically understudied. A significant barrier to studying the interactions between molecularly-distinct subpopulations is the challenge of tissue sampling in GBM. In particular, contrast-enhanced MRI (CE-MRI) routinely guides surgical biopsy and resection of the MRI enhancing core, but fails to address the diverse subpopulations of the surrounding non-enhancing parenchyma (so called “brain around tumor” or BAT). These unresected residual subpopulations in BAT represent the main contributors to tumor recurrence, which can exhibit different therapeutic targets (and interactions) compared with enhancing biopsies. To address the limitations of tissue sampling, imaging techniques can help quantitatively characterize tumors in their entirety, including unresected BAT regions. Our group has used multi-parametric MRI and image-guided biopsies to develop and validate machine-learning (ML) models of intratumoral genomic heterogeneity, with particular focus on the BAT zone. In Aim 1, will we collect and molecularly profile a large set of image-recorded stereotactic biopsies in primary GBM patients to quantify the diversity of molecularly-distinct subpopulations, as well as their phenotypic niches, throughout the BAT zone. We will assess local heterogeneity at the biopsy level and also co-localize regional patterns and rates of recurrence on serial MRI. In Aim 2, we will use these biopsies and spatially matched MRI metrics to refine our existing ML predictive models. We will use these ML models to co- localize spatial patterns of molecularly-distinct subpopulations (and their phenotypic niches) to quantify their risk of regional recurrence. In Aim 3, we will functionally validate the subpopulation interactions observed in Aims 1 and 2 using patient derived xenograft (PDX) models. We will also validate these interactions in human GBM using a subset of spatially matched biopsies from primary and recurrent tumors in the same patients. This proposal leverages our unique expertise in image-guided tissue analysis and MRI-based computational modeling to study the diversity of molecularly-distinct subpopulations and the evolving competitive landscapes in human GBM. This work will help risk stratify patients in future targeted clinical drug trials and should also facilitate new strategies (e.g., adaptive therapy) to exploit subpopulation co-dependency for therapeutic benefit.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leland Hu其他文献

Leland Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leland Hu', 18)}}的其他基金

Quantifying Multiscale Competitive Landscapes of Clonal Diversity in Glioblastoma
量化胶质母细胞瘤克隆多样性的多尺度竞争格局
  • 批准号:
    9895187
  • 财政年份:
    2019
  • 资助金额:
    $ 95.27万
  • 项目类别:
Quantifying Multiscale Competitive Landscapes of Clonal Diversity in Glioblastoma
量化胶质母细胞瘤克隆多样性的多尺度竞争格局
  • 批准号:
    10411429
  • 财政年份:
    2017
  • 资助金额:
    $ 95.27万
  • 项目类别:
Quantifying Multiscale Competitive Landscapes of Clonal Diversity in Glioblastoma
量化胶质母细胞瘤克隆多样性的多尺度竞争格局
  • 批准号:
    9767744
  • 财政年份:
    2017
  • 资助金额:
    $ 95.27万
  • 项目类别:
Quantifying Multiscale Competitive Landscapes of Clonal Diversity in Glioblastoma
量化胶质母细胞瘤克隆多样性的多尺度竞争格局
  • 批准号:
    10226953
  • 财政年份:
    2017
  • 资助金额:
    $ 95.27万
  • 项目类别:
Quantifying Multiscale Competitive Landscapes of Clonal Diversity in Glioblastoma
量化胶质母细胞瘤克隆多样性的多尺度竞争格局
  • 批准号:
    9389124
  • 财政年份:
    2017
  • 资助金额:
    $ 95.27万
  • 项目类别:
MRI-based mapping of regional genomic diversity in Glioblastoma
基于 MRI 的胶质母细胞瘤区域基因组多样性图谱
  • 批准号:
    8490147
  • 财政年份:
    2013
  • 资助金额:
    $ 95.27万
  • 项目类别:
MRI-based mapping of regional genomic diversity in Glioblastoma
基于 MRI 的胶质母细胞瘤区域基因组多样性图谱
  • 批准号:
    8620732
  • 财政年份:
    2013
  • 资助金额:
    $ 95.27万
  • 项目类别:

相似海外基金

EMBRACE - Early detection of Brain Cancer using a novel spectroscopic liquid biopsy enabling timely detection and diagnosis for patient benefit
拥抱 - 使用新型光谱液体活检早期检测脑癌,能够及时检测和诊断,造福患者
  • 批准号:
    10066539
  • 财政年份:
    2023
  • 资助金额:
    $ 95.27万
  • 项目类别:
    EU-Funded
Establishing the clinical utility of cell-free tumor DNA methylation profiling as a reliable liquid biopsy approach in brain tumors
建立无细胞肿瘤 DNA 甲基化分析作为脑肿瘤可靠液体活检方法的临床实用性
  • 批准号:
    10280279
  • 财政年份:
    2022
  • 资助金额:
    $ 95.27万
  • 项目类别:
Establishing the clinical utility of cell-free tumor DNA methylation profiling as a reliable liquid biopsy approach in brain tumors
建立无细胞肿瘤 DNA 甲基化分析作为脑肿瘤可靠液体活检方法的临床实用性
  • 批准号:
    10594945
  • 财政年份:
    2022
  • 资助金额:
    $ 95.27万
  • 项目类别:
Liquid biopsy for brain metastasis using Metastasis diagnostic sensor
使用转移诊断传感器进行脑转移液体活检
  • 批准号:
    454703
  • 财政年份:
    2021
  • 资助金额:
    $ 95.27万
  • 项目类别:
    Fellowship Programs
Focused ultrasound-enabled brain tumor liquid biopsy (FUS-LBx) supplement
聚焦超声脑肿瘤液体活检 (FUS-LBx) 补充剂
  • 批准号:
    10448708
  • 财政年份:
    2021
  • 资助金额:
    $ 95.27万
  • 项目类别:
Nanowire capture genomic biopsy of urine in patients with brain tumors in 60 minutes
纳米线在 60 分钟内捕获脑肿瘤患者尿液的基因组活检
  • 批准号:
    20K23000
  • 财政年份:
    2020
  • 资助金额:
    $ 95.27万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Focused ultrasound-enabled brain tumor liquid biopsy (FUS-LBx)
聚焦超声脑肿瘤液体活检 (FUS-LBx)
  • 批准号:
    10043944
  • 财政年份:
    2020
  • 资助金额:
    $ 95.27万
  • 项目类别:
Focused ultrasound-enabled brain tumor liquid biopsy (FUS-LBx)
聚焦超声脑肿瘤液体活检 (FUS-LBx)
  • 批准号:
    10630940
  • 财政年份:
    2020
  • 资助金额:
    $ 95.27万
  • 项目类别:
Focused ultrasound-enabled brain tumor liquid biopsy (FUS-LBx)
聚焦超声脑肿瘤液体活检 (FUS-LBx)
  • 批准号:
    10428540
  • 财政年份:
    2020
  • 资助金额:
    $ 95.27万
  • 项目类别:
Single-cell transcriptome sequencing to investigate mechanisms of epileptogenesis in genetic mouse models and human brain biopsy tissue
单细胞转录组测序研究遗传小鼠模型和人脑活检组织中癫痫发生的机制
  • 批准号:
    433112721
  • 财政年份:
    2020
  • 资助金额:
    $ 95.27万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了