Quantifying Multiscale Competitive Landscapes of Clonal Diversity in Glioblastoma
量化胶质母细胞瘤克隆多样性的多尺度竞争格局
基本信息
- 批准号:9767744
- 负责人:
- 金额:$ 65.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-12 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBiopsyBrainCell LineCell SurvivalCellsClinicalCommunicationComputer SimulationCultured CellsDataDependenceDiagnosisDiagnosticDrug resistanceEpidermal Growth Factor ReceptorExcisionExhibitsFutureGene MutationGenomicsGlioblastomaHeterogeneityHumanHypoxiaImageImage Guided BiopsyImaging TechniquesIndividualLocationMachine LearningMagnetic Resonance ImagingMapsMinorityModelingMolecularMolecular ProfilingMusMutationNatureOperative Surgical ProceduresPatientsPatternPharmaceutical PreparationsPhenotypePrimary NeoplasmRecurrenceRecurrent tumorResidual stateResistanceRiskSystemTherapeuticTissue SampleTissuesTumorigenicityWorkXenograft ModelXenograft procedureangiogenesisbasecell growthcohortcontrast enhancedepidermal growth factor receptor VIIIexomefollow-upgenomic dataimage guidedimaging informaticsimprovedin vitro Assaymathematical modelmolecular dynamicsnovel strategiesoncologypatient stratificationpredicting responsepredictive modelingrecruitserial imagingtherapeutic targettherapy resistanttranscriptometranscriptome sequencingtranslational impacttreatment responsetumortumor behaviortumor growthtumor heterogeneitytumor progression
项目摘要
ABSTRACT
Glioblastoma (GBM) exhibits profound intratumoral molecular heterogeneity that contributes to treatment
resistance and poor survival. Specifically, each tumor comprises multiple molecularly-distinct subpopulations
with different treatment sensitivities. This heterogeneity not only portends the pre-existence of resistant
molecular subpopulations, but also the communications between neighboring subpopulations that further
modulate tumorigenicity and resistance. In fact, a minority tumor subpopulation with EGFRvIII mutation has
been shown to potentiate a majority subpopulation with wild-type EGFR to increase tumor growth, cell survival,
and drug resistance. This type of cooperativity presents clear implications for improving GBM treatment. Yet
compared to other tumor types, the interactions in GBM remain critically understudied.
A significant barrier to studying the interactions between molecularly-distinct subpopulations is the
challenge of tissue sampling in GBM. In particular, contrast-enhanced MRI (CE-MRI) routinely guides surgical
biopsy and resection of the MRI enhancing core, but fails to address the diverse subpopulations of the
surrounding non-enhancing parenchyma (so called “brain around tumor” or BAT). These unresected residual
subpopulations in BAT represent the main contributors to tumor recurrence, which can exhibit different
therapeutic targets (and interactions) compared with enhancing biopsies. To address the limitations of tissue
sampling, imaging techniques can help quantitatively characterize tumors in their entirety, including unresected
BAT regions. Our group has used multi-parametric MRI and image-guided biopsies to develop and validate
machine-learning (ML) models of intratumoral genomic heterogeneity, with particular focus on the BAT zone.
In Aim 1, will we collect and molecularly profile a large set of image-recorded stereotactic biopsies in
primary GBM patients to quantify the diversity of molecularly-distinct subpopulations, as well as their
phenotypic niches, throughout the BAT zone. We will assess local heterogeneity at the biopsy level and also
co-localize regional patterns and rates of recurrence on serial MRI. In Aim 2, we will use these biopsies and
spatially matched MRI metrics to refine our existing ML predictive models. We will use these ML models to co-
localize spatial patterns of molecularly-distinct subpopulations (and their phenotypic niches) to quantify their
risk of regional recurrence. In Aim 3, we will functionally validate the subpopulation interactions observed in
Aims 1 and 2 using patient derived xenograft (PDX) models. We will also validate these interactions in human
GBM using a subset of spatially matched biopsies from primary and recurrent tumors in the same patients.
This proposal leverages our unique expertise in image-guided tissue analysis and MRI-based computational
modeling to study the diversity of molecularly-distinct subpopulations and the evolving competitive landscapes
in human GBM. This work will help risk stratify patients in future targeted clinical drug trials and should also
facilitate new strategies (e.g., adaptive therapy) to exploit subpopulation co-dependency for therapeutic benefit.
摘要
胶质母细胞瘤(GBM)在肿瘤内表现出明显的分子异质性,有助于治疗
抵抗力和生存能力差。具体地说,每个肿瘤包括多个分子上不同的亚群。
具有不同的治疗敏感性。这种异质性不仅预示着抗药性的先天存在
分子亚群,以及相邻亚群之间的通信,从而进一步
调节肿瘤的致瘤性和抗药性。事实上,带有EGFRvIII突变的少数肿瘤亚群已经
已被证明通过野生型EGFR增强大多数亚群,以增加肿瘤生长,细胞存活率,
以及抗药性。这种类型的协作性对改进GBM治疗具有明显的意义。还没有
与其他类型的肿瘤相比,基底膜中的相互作用仍未得到充分研究。
研究分子不同亚群之间相互作用的一个重要障碍是
组织取样在GBM中的挑战。特别是,对比增强磁共振成像(CE-MRI)是外科手术的常规指导
MRI增强核心的活检和切除,但未能解决不同的亚群
周围无强化的实质(所谓的“肿瘤周围的脑”或BAT)。这些未切除的残留物
BAT中的亚群是肿瘤复发的主要贡献者,它们可以表现出不同的
与加强活检相比,治疗靶点(和相互作用)。为了解决组织的局限性
取样,成像技术可以帮助定量描述肿瘤的整体特征,包括未切除的肿瘤
蝙蝠区域。我们小组使用了多参数磁共振成像和图像引导活检来开发和验证
肿瘤内基因组异质性的机器学习(ML)模型,特别关注BAT区。
在目标1中,我们是否将收集和分子描述一大套图像记录的立体定向活检组织
以量化分子不同亚群的多样性以及他们的
整个蝙蝠区都有表型利基。我们将在活检水平上评估局部异质性,并
在序列MRI上共同定位区域模式和复发率。在目标2中,我们将使用这些活组织检查和
空间匹配的MRI指标,以完善我们现有的ML预测模型。我们将使用这些ML模型来联合
定位分子不同亚群(及其表型生态位)的空间模式,以量化其
区域复发的风险。在目标3中,我们将从功能上验证在
使用患者来源的异种移植(PDX)模型的目标1和2。我们还将在人类身上验证这些相互作用
GBM使用来自同一患者的原发和复发肿瘤的空间匹配活检组织的子集。
这项建议利用了我们在图像引导组织分析和基于MRI的计算方面的独特专业知识
研究分子不同亚群多样性和竞争格局演变的模型
在人类GBM中。这项工作将有助于在未来的有针对性的临床药物试验中对患者进行风险分层,还应该
促进新的战略(例如,适应性治疗),以利用亚群的相互依赖来获得治疗益处。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leland Hu其他文献
Leland Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leland Hu', 18)}}的其他基金
Quantifying Multiscale Competitive Landscapes of Clonal Diversity in Glioblastoma
量化胶质母细胞瘤克隆多样性的多尺度竞争格局
- 批准号:
9895187 - 财政年份:2019
- 资助金额:
$ 65.15万 - 项目类别:
Quantifying Multiscale Competitive Landscapes of Clonal Diversity in Glioblastoma
量化胶质母细胞瘤克隆多样性的多尺度竞争格局
- 批准号:
10411429 - 财政年份:2017
- 资助金额:
$ 65.15万 - 项目类别:
Quantifying Multiscale Competitive Landscapes of Clonal Diversity in Glioblastoma
量化胶质母细胞瘤克隆多样性的多尺度竞争格局
- 批准号:
10005896 - 财政年份:2017
- 资助金额:
$ 65.15万 - 项目类别:
Quantifying Multiscale Competitive Landscapes of Clonal Diversity in Glioblastoma
量化胶质母细胞瘤克隆多样性的多尺度竞争格局
- 批准号:
10226953 - 财政年份:2017
- 资助金额:
$ 65.15万 - 项目类别:
Quantifying Multiscale Competitive Landscapes of Clonal Diversity in Glioblastoma
量化胶质母细胞瘤克隆多样性的多尺度竞争格局
- 批准号:
9389124 - 财政年份:2017
- 资助金额:
$ 65.15万 - 项目类别:
MRI-based mapping of regional genomic diversity in Glioblastoma
基于 MRI 的胶质母细胞瘤区域基因组多样性图谱
- 批准号:
8490147 - 财政年份:2013
- 资助金额:
$ 65.15万 - 项目类别:
MRI-based mapping of regional genomic diversity in Glioblastoma
基于 MRI 的胶质母细胞瘤区域基因组多样性图谱
- 批准号:
8620732 - 财政年份:2013
- 资助金额:
$ 65.15万 - 项目类别:
相似海外基金
EMBRACE - Early detection of Brain Cancer using a novel spectroscopic liquid biopsy enabling timely detection and diagnosis for patient benefit
拥抱 - 使用新型光谱液体活检早期检测脑癌,能够及时检测和诊断,造福患者
- 批准号:
10066539 - 财政年份:2023
- 资助金额:
$ 65.15万 - 项目类别:
EU-Funded
Establishing the clinical utility of cell-free tumor DNA methylation profiling as a reliable liquid biopsy approach in brain tumors
建立无细胞肿瘤 DNA 甲基化分析作为脑肿瘤可靠液体活检方法的临床实用性
- 批准号:
10280279 - 财政年份:2022
- 资助金额:
$ 65.15万 - 项目类别:
Establishing the clinical utility of cell-free tumor DNA methylation profiling as a reliable liquid biopsy approach in brain tumors
建立无细胞肿瘤 DNA 甲基化分析作为脑肿瘤可靠液体活检方法的临床实用性
- 批准号:
10594945 - 财政年份:2022
- 资助金额:
$ 65.15万 - 项目类别:
Liquid biopsy for brain metastasis using Metastasis diagnostic sensor
使用转移诊断传感器进行脑转移液体活检
- 批准号:
454703 - 财政年份:2021
- 资助金额:
$ 65.15万 - 项目类别:
Fellowship Programs
Focused ultrasound-enabled brain tumor liquid biopsy (FUS-LBx) supplement
聚焦超声脑肿瘤液体活检 (FUS-LBx) 补充剂
- 批准号:
10448708 - 财政年份:2021
- 资助金额:
$ 65.15万 - 项目类别:
Nanowire capture genomic biopsy of urine in patients with brain tumors in 60 minutes
纳米线在 60 分钟内捕获脑肿瘤患者尿液的基因组活检
- 批准号:
20K23000 - 财政年份:2020
- 资助金额:
$ 65.15万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Focused ultrasound-enabled brain tumor liquid biopsy (FUS-LBx)
聚焦超声脑肿瘤液体活检 (FUS-LBx)
- 批准号:
10043944 - 财政年份:2020
- 资助金额:
$ 65.15万 - 项目类别:
Focused ultrasound-enabled brain tumor liquid biopsy (FUS-LBx)
聚焦超声脑肿瘤液体活检 (FUS-LBx)
- 批准号:
10630940 - 财政年份:2020
- 资助金额:
$ 65.15万 - 项目类别:
Focused ultrasound-enabled brain tumor liquid biopsy (FUS-LBx)
聚焦超声脑肿瘤液体活检 (FUS-LBx)
- 批准号:
10428540 - 财政年份:2020
- 资助金额:
$ 65.15万 - 项目类别:
Single-cell transcriptome sequencing to investigate mechanisms of epileptogenesis in genetic mouse models and human brain biopsy tissue
单细胞转录组测序研究遗传小鼠模型和人脑活检组织中癫痫发生的机制
- 批准号:
433112721 - 财政年份:2020
- 资助金额:
$ 65.15万 - 项目类别:
Research Grants