Bayesian Methods for Assessing Gene by Environment Interactions

通过环境相互作用评估基因的贝叶斯方法

基本信息

  • 批准号:
    8293144
  • 负责人:
  • 金额:
    $ 34.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-25 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

Summary/Abstract We propose to develop new statistical methods for studying gene x environment (GxE) interactions using data from molecular epidemiology studies. The focus is on targeted studies, which use single cell gel electrophoresis to measure DNA damage. This technology has great potential for study of GxE, since one can assess how the distribution of DNA damage across cells from an individual varies between experimental conditions. By drawing from cell lines for individuals with known genotype, the NIEHS Comet GxE study seeks to identify single nucleotide polymorphisms (SNPs) related to baseline DNA damage, susceptibility to genotoxic exposures, and repair rate. The phenotype for an individual in such studies is a collection of distributions corresponding to cell-specific DNA damage under different conditions. New methods are needed to efficiently analyze such distributional profiles, while allowing heterogeneity among subjects and SNP selection. The ability to detect GxE interactions is of great public health importance, allowing physicians to better identify patients that are more sensitive to a drug therapy or environmental exposure. Targeted molecular epidemiology studies provide an efficient alternative to traditional epidemiologic designs. Our goals include the following. 1. Develop nonparametric Bayesian statistical methods that allow a distributional profile to vary flexibly across individuals and with predictors, while allowing variable selection. 2. Apply these methods to data from the NIEHS Comet GxE Study to select SNPs associated with baseline DNA damage, susceptibility and repair rates. 3. Develop approaches for including outside information on each SNP, including whether it is in the coding region, is synonymous, is non-synonymous but at a location at which an amino acid change is likely to be damaging, or is in an intron or flanking sequence but is likely to impact gene expression. 4. An additional goal is to develop approximate Bayes methods that can be implemented rapidly, while encouraging sparse modeling of distributional profiles.
摘要/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Brian Dunson其他文献

David Brian Dunson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Brian Dunson', 18)}}的其他基金

Improving inferences on health effects of chemical exposures
改进对化学品暴露对健康影响的推断
  • 批准号:
    10753010
  • 财政年份:
    2023
  • 资助金额:
    $ 34.4万
  • 项目类别:
CRCNS: Geometry-based Brain Connectome Analysis
CRCNS:基于几何的脑连接组分析
  • 批准号:
    9788529
  • 财政年份:
    2018
  • 资助金额:
    $ 34.4万
  • 项目类别:
Structured nonparametric methods for mixtures of exposures
混合暴露的结构化非参数方法
  • 批准号:
    10112908
  • 财政年份:
    2018
  • 资助金额:
    $ 34.4万
  • 项目类别:
Structured nonparametric methods for mixtures of exposures
混合暴露的结构化非参数方法
  • 批准号:
    9883638
  • 财政年份:
    2018
  • 资助金额:
    $ 34.4万
  • 项目类别:
Bayesian Methods for Assessing Gene by Environment Interactions
通过环境相互作用评估基因的贝叶斯方法
  • 批准号:
    8496781
  • 财政年份:
    2009
  • 资助金额:
    $ 34.4万
  • 项目类别:
Bayesian Methods for Assessing Gene by Environment Interactions
通过环境相互作用评估基因的贝叶斯方法
  • 批准号:
    8092765
  • 财政年份:
    2009
  • 资助金额:
    $ 34.4万
  • 项目类别:
Bayesian Methods for Assessing Gene by Environment Interactions
通过环境相互作用评估基因的贝叶斯方法
  • 批准号:
    7697425
  • 财政年份:
    2009
  • 资助金额:
    $ 34.4万
  • 项目类别:
Nonparametric Bayes Methods for Biomedical Studies
生物医学研究的非参数贝叶斯方法
  • 批准号:
    8451617
  • 财政年份:
    2009
  • 资助金额:
    $ 34.4万
  • 项目类别:
Nonparametric Bayes Methods for Biomedical Studies
生物医学研究的非参数贝叶斯方法
  • 批准号:
    8248216
  • 财政年份:
    2009
  • 资助金额:
    $ 34.4万
  • 项目类别:
Nonparametric Bayes Methods for Biomedical Studies
生物医学研究的非参数贝叶斯方法
  • 批准号:
    8049180
  • 财政年份:
    2009
  • 资助金额:
    $ 34.4万
  • 项目类别:

相似海外基金

Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
  • 批准号:
    BB/Y006380/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.4万
  • 项目类别:
    Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
  • 批准号:
    24K17112
  • 财政年份:
    2024
  • 资助金额:
    $ 34.4万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
  • 批准号:
    2300890
  • 财政年份:
    2023
  • 资助金额:
    $ 34.4万
  • 项目类别:
    Continuing Grant
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
  • 批准号:
    23K06918
  • 财政年份:
    2023
  • 资助金额:
    $ 34.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
  • 批准号:
    23K05758
  • 财政年份:
    2023
  • 资助金额:
    $ 34.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
  • 批准号:
    23K04668
  • 财政年份:
    2023
  • 资助金额:
    $ 34.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
  • 批准号:
    2888395
  • 财政年份:
    2023
  • 资助金额:
    $ 34.4万
  • 项目类别:
    Studentship
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
  • 批准号:
    10761044
  • 财政年份:
    2023
  • 资助金额:
    $ 34.4万
  • 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
  • 批准号:
    10728925
  • 财政年份:
    2023
  • 资助金额:
    $ 34.4万
  • 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
  • 批准号:
    10757309
  • 财政年份:
    2023
  • 资助金额:
    $ 34.4万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了