Structured nonparametric methods for mixtures of exposures

混合暴露的结构化非参数方法

基本信息

  • 批准号:
    9883638
  • 负责人:
  • 金额:
    $ 42.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-03-01 至 2022-02-28
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Although it is well known that humans are exposed to a complex mixture of different chemicals, having constit- uents that change dynamically as an individual ages, very little is known about how these exposures interact to impact health outcomes. The overarching focus in the toxicology and epidemiology literatures has been on ex- amining the health effects of chemicals one at a time. One reason for the lack of consideration of more holistic approaches for simultaneously assessing the health effect of multiple chemicals is the lack of appropriate sta- tistical methods that are interpretable and reliable at disentangling the impact of each chemical in the mixture. When attempts are made to include different chemicals simultaneously in statistical models, most of the focus has been on generic multivariate statistical methods that often fail to have adequate performance. For exam- ple, simply including different exposures in nonparametric regression models can lead to unstable estimates due to the so-called curse of dimensionality, particularly if the different exposures are moderately to highly cor- related. The overarching goal of this proposal is to develop novel statistical approaches, which are specifically tailored for mixture exposure problems, incorporating mechanistic constraints and supplemental data on chem- ical structure and toxicological responses to improve performance. An initial focus is on developing restricted nonparametric regression methods, which constrain the response surface to be monotone with possible down- turns at low and high doses, consistent with prior data and mechanistic knowledge. Such constraints substan- tially improve stability and performance in estimating dose response, while facilitating interpretation. Another key advance is the development of mechanistic interaction models, which reduce dimensionality and enable disentangling of main effects and chemical-chemical interactions, allowing no interaction, synergy or antago- nism. A further thread designs a novel class of mechanistic response surface models, which directly incorpo- rate supplemental data on chemical structure and borrow information from one-chemical-at-a-time toxicological studies. These models enable de novo prediction of dose response and interactions for new chemicals, which have known structure but have not been studied in toxicology and epidemiology studies. These predictions in- clude an accurate characterization of uncertainty, highlighting cases in which more data are needed. To be ap- propriate for a rich variety of epidemiological study designs, the methods are generalized to account for covari- ate adjustments, longitudinal and nested data structures, censoring, and other complications. A key focus of the project is on producing user-friendly software that non-statistician scientists can use to analyze and visual- ize the health effects of mixture exposures, provided on the project's GitHub site and beta tested. Methods will be tested in a multi-tiered fashion through theoretical studies, comprehensive simulation experiments including comparisons to a rich variety of existing approaches under challenging scenarios, and applications to multiple epidemiology studies. These studies include the MSSM Children's Cohort, NHANES, and CHAMACOS.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Brian Dunson其他文献

David Brian Dunson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Brian Dunson', 18)}}的其他基金

Improving inferences on health effects of chemical exposures
改进对化学品暴露对健康影响的推断
  • 批准号:
    10753010
  • 财政年份:
    2023
  • 资助金额:
    $ 42.81万
  • 项目类别:
CRCNS: Geometry-based Brain Connectome Analysis
CRCNS:基于几何的脑连接组分析
  • 批准号:
    9788529
  • 财政年份:
    2018
  • 资助金额:
    $ 42.81万
  • 项目类别:
Structured nonparametric methods for mixtures of exposures
混合暴露的结构化非参数方法
  • 批准号:
    10112908
  • 财政年份:
    2018
  • 资助金额:
    $ 42.81万
  • 项目类别:
Bayesian Methods for Assessing Gene by Environment Interactions
通过环境相互作用评估基因的贝叶斯方法
  • 批准号:
    8496781
  • 财政年份:
    2009
  • 资助金额:
    $ 42.81万
  • 项目类别:
Bayesian Methods for Assessing Gene by Environment Interactions
通过环境相互作用评估基因的贝叶斯方法
  • 批准号:
    8092765
  • 财政年份:
    2009
  • 资助金额:
    $ 42.81万
  • 项目类别:
Bayesian Methods for Assessing Gene by Environment Interactions
通过环境相互作用评估基因的贝叶斯方法
  • 批准号:
    7697425
  • 财政年份:
    2009
  • 资助金额:
    $ 42.81万
  • 项目类别:
Bayesian Methods for Assessing Gene by Environment Interactions
通过环境相互作用评估基因的贝叶斯方法
  • 批准号:
    8293144
  • 财政年份:
    2009
  • 资助金额:
    $ 42.81万
  • 项目类别:
Nonparametric Bayes Methods for Biomedical Studies
生物医学研究的非参数贝叶斯方法
  • 批准号:
    8451617
  • 财政年份:
    2009
  • 资助金额:
    $ 42.81万
  • 项目类别:
Nonparametric Bayes Methods for Biomedical Studies
生物医学研究的非参数贝叶斯方法
  • 批准号:
    8248216
  • 财政年份:
    2009
  • 资助金额:
    $ 42.81万
  • 项目类别:
Nonparametric Bayes Methods for Biomedical Studies
生物医学研究的非参数贝叶斯方法
  • 批准号:
    8049180
  • 财政年份:
    2009
  • 资助金额:
    $ 42.81万
  • 项目类别:

相似国自然基金

湍流和化学交互作用对H2-Air-H2O微混燃烧中NO生成的影响研究
  • 批准号:
    51976048
  • 批准年份:
    2019
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目

相似海外基金

Investigating the biological effects of environmental air pollution on lung cancer in never smokers using an integrated genomics approach
使用综合基因组学方法研究环境空气污染对从不吸烟者肺癌的生物学影响
  • 批准号:
    476177
  • 财政年份:
    2022
  • 资助金额:
    $ 42.81万
  • 项目类别:
    Studentship Programs
Air Pollution, Stress and Asthma Morbidity Risk: Role of Biological and Geospatial Markers
空气污染、压力和哮喘发病风险:生物和地理空间标记的作用
  • 批准号:
    10396626
  • 财政年份:
    2021
  • 资助金额:
    $ 42.81万
  • 项目类别:
Air Pollution, Stress and Asthma Morbidity Risk: Role of Biological and Geospatial Markers
空气污染、压力和哮喘发病风险:生物和地理空间标记的作用
  • 批准号:
    10216007
  • 财政年份:
    2021
  • 资助金额:
    $ 42.81万
  • 项目类别:
Air Pollution, Stress and Asthma Morbidity Risk: Role of Biological and Geospatial Markers
空气污染、压力和哮喘发病风险:生物和地理空间标记的作用
  • 批准号:
    10615633
  • 财政年份:
    2021
  • 资助金额:
    $ 42.81万
  • 项目类别:
Investigation into the biochemical and biological effects of air pollution on the function of human skin and the intervention of such effects
空气污染对人体皮肤功能的生化、生物学影响及其干预研究
  • 批准号:
    2314361
  • 财政年份:
    2018
  • 资助金额:
    $ 42.81万
  • 项目类别:
    Studentship
Investigation into the biochemical and biological effects of air pollution on the function of human skin and the intervention of such effects
空气污染对人体皮肤功能的生化、生物学影响及其干预研究
  • 批准号:
    BB/S506837/1
  • 财政年份:
    2018
  • 资助金额:
    $ 42.81万
  • 项目类别:
    Training Grant
Biological effect and preventive method for human serum albumin binding to transboundary air borne PM2.5.
人血清白蛋白与跨境空气PM2.5结合的生物学效应及预防方法。
  • 批准号:
    18H03039
  • 财政年份:
    2018
  • 资助金额:
    $ 42.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The Biological Effects of Shipping-Related Particulate Matter Air Pollution
与航运相关的颗粒物空气污染的生物效应
  • 批准号:
    BB/P011365/1
  • 财政年份:
    2017
  • 资助金额:
    $ 42.81万
  • 项目类别:
    Fellowship
Air-seq: A method for early detection of any biological threats
Air-seq:一种早期检测任何生物威胁的方法
  • 批准号:
    BB/N020251/1
  • 财政年份:
    2016
  • 资助金额:
    $ 42.81万
  • 项目类别:
    Research Grant
BIOlogical air pollution MOdelling and associations with Lung Disease (BIOMOLD)
生物空气污染模型及其与肺部疾病的关联 (BIOMOLD)
  • 批准号:
    NE/P010806/1
  • 财政年份:
    2016
  • 资助金额:
    $ 42.81万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了