Bayesian Methods for Assessing Gene by Environment Interactions
通过环境相互作用评估基因的贝叶斯方法
基本信息
- 批准号:8092765
- 负责人:
- 金额:$ 34.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-25 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAmino AcidsBackBayesian MethodCell LineCell physiologyCellsCodeCollectionComet AssayComplexDNA DamageDNA RepairDNA Repair GeneDNA strand breakDataDevelopmentDiabetes MellitusDietDiseaseEnvironmentEnvironmental ExposureEnvironmental Risk FactorEpidemiologyEtiologyExposure toFrequenciesGene ExpressionGenesGeneticGenetic PolymorphismGenetic Predisposition to DiseaseGenomeGenotypeGoalsHaplotypesHeterogeneityHydrogen PeroxideIndividualIntronsIonizing radiationLinear RegressionsLocationMalignant NeoplasmsMeasuresMethodsModelingMolecular EpidemiologyMonte Carlo MethodMotivationMutagensMutationNational Institute of Environmental Health SciencesOlives - dietaryPathway interactionsPatientsPharmacotherapyPhenotypePhysiciansPlayPopulationPredispositionPrevention strategyPublic HealthRelative (related person)RoleSamplingSeaShapesSingle Nucleotide PolymorphismSpace ModelsStatistical MethodsTailTechnologyTimeUnited StatesWorkbasedesigndisorder riskepidemiology studygene environment interactionimmortalized cellimprovedinnovationlifestyle factorspublic health relevancerepairedresponsetooltraittreatment strategy
项目摘要
DESCRIPTION (provided by applicant): We propose to develop new statistical methods for studying gene x environment (GxE) interactions using data from molecular epidemiology studies. The focus is on targeted studies, which use single cell gel electrophoresis to measure DNA damage. This technology has great potential for study of GxE, since one can assess how the distribution of DNA damage across cells from an individual varies between experimental conditions. By drawing from cell lines for individuals with known genotype, the NIEHS Comet GxE study seeks to identify single nucleotide polymorphisms (SNPs) related to baseline DNA damage, susceptibility to genotoxic exposures, and repair rate. The phenotype for an individual in such studies is a collection of distributions corresponding to cell-specific DNA damage under different conditions. New methods are needed to efficiently analyze such distributional profiles, while allowing heterogeneity among subjects and SNP selection. The ability to detect GxE interactions is of great public health importance, allowing physicians to better identify patients that are more sensitive to a drug therapy or environmental exposure. Targeted molecular epidemiology studies provide an efficient alternative to traditional epidemiologic designs. Our goals include the following. 1. Develop nonparametric Bayesian statistical methods that allow a distributional profile to vary flexibly across individuals and with predictors, while allowing variable selection. 2. Apply these methods to data from the NIEHS Comet GxE Study to select SNPs associated with baseline DNA damage, susceptibility and repair rates. 3. Develop approaches for including outside information on each SNP, including whether it is in the coding region, is synonymous, is non-synonymous but at a location at which an amino acid change is likely to be damaging, or is in an intron or flanking sequence but is likely to impact gene expression. 4. An additional goal is to develop approximate Bayes methods that can be implemented rapidly, while encouraging sparse modeling of distributional profiles.
PUBLIC HEALTH RELEVANCE: The development of complex diseases, such as cancer and diabetes, depends on the interaction between genetic predisposition and a variety of lifestyle factors, including diet and environmental exposures. Identifying gene-environment interactions is a critical step in obtaining a better understanding of disease etiology, while also developing more effective personalized prevention and treatment strategies. We provide the statistical tools necessary to efficiently detect gene-environment interactions utilizing data from innovative new molecular epidemiology designs.
描述(由申请人提供):我们建议开发新的统计方法,用于研究基因x环境(GxE)的相互作用,使用分子流行病学研究的数据。重点是有针对性的研究,使用单细胞凝胶电泳来测量DNA损伤。这项技术在研究GxE方面具有很大的潜力,因为人们可以评估DNA损伤在个体细胞中的分布如何在实验条件之间变化。通过从已知基因型个体的细胞系中提取,NIEHS Comet GxE研究旨在确定与基线DNA损伤、遗传毒性暴露易感性和修复率相关的单核苷酸多态性(SNP)。在这些研究中,个体的表型是在不同条件下对应于细胞特异性DNA损伤的分布的集合。需要新的方法来有效地分析这种分布概况,同时允许受试者之间的异质性和SNP选择。检测GxE相互作用的能力具有重要的公共卫生意义,使医生能够更好地识别对药物治疗或环境暴露更敏感的患者。靶向分子流行病学研究为传统流行病学设计提供了一种有效的替代方案。我们的目标包括以下内容。1.开发非参数贝叶斯统计方法,允许分布特征在个体和预测因子之间灵活变化,同时允许变量选择。2.将这些方法应用于NIEHS彗星GxE研究的数据,以选择与基线DNA损伤,易感性和修复率相关的SNP。3.开发包括每个SNP的外部信息的方法,包括它是否在编码区,是否是同义的,是否是非同义的,但在氨基酸变化可能是破坏性的位置,或是否在内含子或侧翼序列,但可能影响基因表达。4.另一个目标是开发可以快速实施的近似贝叶斯方法,同时鼓励稀疏建模的分布配置文件。
公共卫生关系:癌症和糖尿病等复杂疾病的发展取决于遗传易感性与各种生活方式因素(包括饮食和环境暴露)之间的相互作用。识别基因-环境相互作用是更好地了解疾病病因的关键步骤,同时也是制定更有效的个性化预防和治疗策略的关键步骤。我们提供了必要的统计工具,有效地检测基因与环境的相互作用,利用创新的新分子流行病学设计的数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Brian Dunson其他文献
David Brian Dunson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Brian Dunson', 18)}}的其他基金
Improving inferences on health effects of chemical exposures
改进对化学品暴露对健康影响的推断
- 批准号:
10753010 - 财政年份:2023
- 资助金额:
$ 34.4万 - 项目类别:
CRCNS: Geometry-based Brain Connectome Analysis
CRCNS:基于几何的脑连接组分析
- 批准号:
9788529 - 财政年份:2018
- 资助金额:
$ 34.4万 - 项目类别:
Structured nonparametric methods for mixtures of exposures
混合暴露的结构化非参数方法
- 批准号:
10112908 - 财政年份:2018
- 资助金额:
$ 34.4万 - 项目类别:
Structured nonparametric methods for mixtures of exposures
混合暴露的结构化非参数方法
- 批准号:
9883638 - 财政年份:2018
- 资助金额:
$ 34.4万 - 项目类别:
Bayesian Methods for Assessing Gene by Environment Interactions
通过环境相互作用评估基因的贝叶斯方法
- 批准号:
8496781 - 财政年份:2009
- 资助金额:
$ 34.4万 - 项目类别:
Bayesian Methods for Assessing Gene by Environment Interactions
通过环境相互作用评估基因的贝叶斯方法
- 批准号:
7697425 - 财政年份:2009
- 资助金额:
$ 34.4万 - 项目类别:
Bayesian Methods for Assessing Gene by Environment Interactions
通过环境相互作用评估基因的贝叶斯方法
- 批准号:
8293144 - 财政年份:2009
- 资助金额:
$ 34.4万 - 项目类别:
Nonparametric Bayes Methods for Biomedical Studies
生物医学研究的非参数贝叶斯方法
- 批准号:
8451617 - 财政年份:2009
- 资助金额:
$ 34.4万 - 项目类别:
Nonparametric Bayes Methods for Biomedical Studies
生物医学研究的非参数贝叶斯方法
- 批准号:
8248216 - 财政年份:2009
- 资助金额:
$ 34.4万 - 项目类别:
Nonparametric Bayes Methods for Biomedical Studies
生物医学研究的非参数贝叶斯方法
- 批准号:
8049180 - 财政年份:2009
- 资助金额:
$ 34.4万 - 项目类别:
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 34.4万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 34.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 34.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 34.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 34.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
- 批准号:
2888395 - 财政年份:2023
- 资助金额:
$ 34.4万 - 项目类别:
Studentship
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 34.4万 - 项目类别:
Continuing Grant
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 34.4万 - 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 34.4万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 34.4万 - 项目类别: