Molecular Regulation of Fusion: Voltage Dependence and Local Physical Interaction
聚变的分子调控:电压依赖性和局部物理相互作用
基本信息
- 批准号:8432279
- 负责人:
- 金额:$ 34.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2017-03-31
- 项目状态:已结题
- 来源:
- 关键词:Amino AcidsBindingCell fusionCellsChargeChemicalsChimera organismChimeric ProteinsComplexConfocal MicroscopyCoupledCouplingCrystallographyCytosolDNA Sequence RearrangementDependenceElectron TransportEndosomesEnvironmentEvolutionGeneticGenetic MaterialsImmune responseIndividualInfectionInfection preventionLabelLaboratoriesLeadLinkLipid BindingLipidsMeasuresMediatingMembraneMembrane PotentialsMethodsMolecularMonitorMovementNADPH OxidaseNucleocapsidOxidation-ReductionPharmaceutical PreparationsPhosphatidylserinesPhysiologicalPositioning AttributePreventionProcessPropertyProtein BindingProtein IsoformsProteinsReagentRegulationResearch PersonnelRoleSiteSolutionsStructureTechniquesTestingTransmembrane DomainVaccinesViralViral Fusion ProteinsViral ProteinsVirionVirusVirus Diseasesdipole momentdisulfide bondmonolayeroxidationpathogenphysical propertypublic health relevanceresearch studyresponsesensorvirus geneticsvoltage
项目摘要
DESCRIPTION (provided by applicant): All viruses that contain class II or class III fusion proteins (and some with class I) fuse from within endosomes. For these viruses, the endosome is the initial site of infection. In response to the low-pH endosomal environment, a fusion protein
undergoes conformational changes that cause merger of the viral and endosomal membranes, releasing the viral genetic material into cytosol. If regions on the fusion protein critical for infection are located, they will provide targets for new anti-viral drugs and vaccines. Properties of the endosomal membrane itself and its interior such as membrane voltage, acidic lipids, and redox potentials could also exert profound effects on fusion; if regulatory properties are identified and could be modified, new methods of halting infection could result. Voltage across endosomal membranes has been shown by our laboratory to control fusion of a number of types of virions that have class II or class III fusion proteins: the naturally occurring negative voltag across a membrane promotes fusion; positive voltage inhibits it. The universality of voltage dependence of class II and III fusion proteins is now reasonably certain. Chimera experiments strongly suggest the transmembrane domain (TMD) as the region of the fusion protein that confers voltage sensitivity. Voltage dependence could arise either because a TMD directly responds to voltage, or because acidic (negatively charged) lipids in outer membrane leaflets bind to TMDs. The concentration of acidic lipids in outer leaflets varies with voltage-dependent flip-flop between leaflets: enriching the concentration of acidic lipids in outer leaflets by experimentally incorporating them and measuring the consequences to voltage-dependent fusion will determine if acidic lipid binding causes voltage-dependent fusion. If it does, the binding region on the fusion protein will be identified by altering the protein. If the TMD is the voltage sensor, measuring displacement currents of synthetic TMDs will determine whether a large dipole moment is the key for sensing voltage. The energy required to transfer electrons (redox potentials) may also have an important role in regulating viral fusion: The redox potential of an endosome depends on its level of NADPH oxidase (NOX). Inhibition of NOX activity within endosomes indicates that the number of virions that fuse varies with the oxidation state in the same manner it does in cell-cell fusion. NOX activity will be altered, and fusion within endosomes monitored by confocal microscopy, to determine the relevance of redox potentials in infection. Methods to monitor membrane insertion of segments of viral fusion proteins will be developed through coupling lipophilic, charged probes to a fusion protein and electrophysiologically determining if voltage dependence of fusion is altered. This method will have far greater sensitivity than current methods. Class II and III proteins share some structural features; insertion studies could thus yield fundamental principles that unify the mechanisms of action of fusion proteins in these two classes. Clinically, identifying the mechanisms for endosomal control of viral fusion will reveal which processes could be interrupted to reduce or prevent infection.
描述(由申请方提供):所有含有II类或III类融合蛋白(和一些I类)的病毒均从内体融合。对于这些病毒,内体是感染的初始位点。为了响应低pH内体环境,
经历构象变化,引起病毒和内体膜的合并,将病毒遗传物质释放到胞质溶胶中。如果融合蛋白上对感染至关重要的区域被定位,它们将为新的抗病毒药物和疫苗提供靶点。内体膜本身及其内部的性质,如膜电压,酸性脂质和氧化还原电位也可能对融合产生深远的影响;如果确定并修改调节特性,可能会产生阻止感染的新方法。我们的实验室已经证明,跨内体膜的电压可以控制许多具有II类或III类融合蛋白的病毒粒子的融合:跨膜的自然发生的负电压促进融合;正电压抑制融合。嵌合体实验强烈表明跨膜结构域(TMD)作为赋予电压敏感性的融合蛋白的区域。电压依赖性可能是因为TMD直接响应电压,或者因为外膜小叶中的酸性(带负电荷)脂质与TMD结合。外小叶中酸性脂质的浓度随着小叶之间的电压依赖性翻转而变化:通过实验性地将它们并入并测量对电压依赖性融合的后果来富集外小叶中酸性脂质的浓度,将确定酸性脂质结合是否引起电压依赖性融合。如果是这样,融合蛋白上的结合区域将通过改变蛋白质来鉴定。如果TMD是电压传感器,则测量合成TMD的位移电流将确定大的偶极矩是否是感测电压的关键。转移电子所需的能量(氧化还原电位)也可能在调节病毒融合中起重要作用:内体的氧化还原电位取决于其NADPH氧化酶(NOX)的水平。内体内NOX活性的抑制表明融合的病毒体的数量以与细胞-细胞融合相同的方式随氧化态而变化。将改变NOX活性,并通过共聚焦显微镜监测内体内的融合,以确定感染中氧化还原电位的相关性。将通过将亲脂性带电探针与融合蛋白偶联并通过电生理学确定融合的电压依赖性是否改变来开发监测病毒融合蛋白片段膜插入的方法。这种方法的灵敏度将远远高于目前的方法。II类和III类蛋白质共享一些结构特征;因此插入研究可以产生统一这两类融合蛋白作用机制的基本原理。在临床上,确定病毒融合的内体控制机制将揭示哪些过程可以被中断以减少或预防感染。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FREDRIC S COHEN其他文献
FREDRIC S COHEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FREDRIC S COHEN', 18)}}的其他基金
Biophysical Mechanisms of Cholesterol Homeostasis
胆固醇稳态的生物物理机制
- 批准号:
10454109 - 财政年份:2021
- 资助金额:
$ 34.51万 - 项目类别:
Biophysical Mechanisms of Cholesterol Homeostasis
胆固醇稳态的生物物理机制
- 批准号:
10624260 - 财政年份:2021
- 资助金额:
$ 34.51万 - 项目类别:
Biophysical Mechanisms of Cholesterol Homeostasis
胆固醇稳态的生物物理机制
- 批准号:
10117604 - 财政年份:2021
- 资助金额:
$ 34.51万 - 项目类别:
Molecular Regulation of Fusion: Voltage Dependence and Local Physical Interaction
聚变的分子调控:电压依赖性和局部物理相互作用
- 批准号:
8824948 - 财政年份:2013
- 资助金额:
$ 34.51万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:32170319
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
- 批准号:31372080
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
- 批准号:81172529
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
- 批准号:81070952
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
- 批准号:30672361
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 34.51万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 34.51万 - 项目类别:
Continuing Grant
Alkane transformations through binding to metals
通过与金属结合进行烷烃转化
- 批准号:
DP240103289 - 财政年份:2024
- 资助金额:
$ 34.51万 - 项目类别:
Discovery Projects
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 34.51万 - 项目类别:
Fellowship
Conformations of musk odorants and their binding to human musk receptors
麝香气味剂的构象及其与人类麝香受体的结合
- 批准号:
EP/X039420/1 - 财政年份:2024
- 资助金额:
$ 34.51万 - 项目类别:
Research Grant
Postdoctoral Fellowship: OPP-PRF: Understanding the Role of Specific Iron-binding Organic Ligands in Governing Iron Biogeochemistry in the Southern Ocean
博士后奖学金:OPP-PRF:了解特定铁结合有机配体在控制南大洋铁生物地球化学中的作用
- 批准号:
2317664 - 财政年份:2024
- 资助金额:
$ 34.51万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of Real-time, Ultrasensitive Electrical Transduction of Biological Binding Events for Pathogen and Disease Detection
I-Corps:生物结合事件的实时、超灵敏电转导在病原体和疾病检测中的转化潜力
- 批准号:
2419915 - 财政年份:2024
- 资助金额:
$ 34.51万 - 项目类别:
Standard Grant
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
- 批准号:
MR/Y013131/1 - 财政年份:2024
- 资助金额:
$ 34.51万 - 项目类别:
Research Grant
CRII: OAC: Development of a modular framework for the modeling of peptide and protein binding to membranes
CRII:OAC:开发用于模拟肽和蛋白质与膜结合的模块化框架
- 批准号:
2347997 - 财政年份:2024
- 资助金额:
$ 34.51万 - 项目类别:
Standard Grant
How lipid binding proteins shape the activity of nuclear hormone receptors
脂质结合蛋白如何影响核激素受体的活性
- 批准号:
DP240103141 - 财政年份:2024
- 资助金额:
$ 34.51万 - 项目类别:
Discovery Projects