Biophysical Mechanisms of Cholesterol Homeostasis
胆固醇稳态的生物物理机制
基本信息
- 批准号:10624260
- 负责人:
- 金额:$ 34.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:BackBindingBiological AssayBiophysical ProcessCaveolaeCaveolinsCell Signaling ProcessCell membraneCell physiologyCellsCellular biologyChemicalsCholesterolCholesterol HomeostasisClosure by clampCommunicationCuesDataDevicesDiseaseExposure toFRAP1 geneFeedsFluorescenceFluorescence Resonance Energy TransferGrowth FactorLeadLinkMeasurementMeasuresMembraneMethodsPIK3CG genePathologyPerfusionPhosphorylationPhysiologicalPlasma CellsPositioning AttributeRegulationResolutionRestScaffolding ProteinSignal PathwaySignal TransductionSignaling MoleculeSignaling ProteinSiteTechniquesTertiary Protein StructureTestingTimecaveolin 1cholesterol controldehydroergosterolexperimental studyextracellularflotillininhibitormTOR Signaling Pathwaymembrane activitynoveloptogeneticsrestorationscaffoldsensor
项目摘要
Abstract
Understanding mechanisms cells use to maintain cholesterol homeostasis are critical in cell biology and many
diseases. To achieve this, the chemical activity of cholesterol in cell plasma membranes must be measured
because activity controls cholesterol’s effects on cellular processes. To date, plasma membrane cholesterol
concentration has been used to quantify cholesterol activity. But the activity of cholesterol is determined by its
chemical potential; concentration contributes to, but does not accurately reflect membrane activity. Because a
method to measure cholesterol chemical potential had not been available, it was not possible to properly
evaluate many of cholesterol’s effects, including those on cellular signaling. We have now developed methods
to do so. These methods and a new perfusion fluorimetry apparatus we have devised allow us to follow the
chemical potential of cholesterol of plasma membranes in real time. We have discovered that cells quickly
respond to changes in extracellular cholesterol by adjusting the cholesterol chemical potential of their plasma
membranes without changing the total content of cellular cholesterol. This finding reveals a previously unknown
mechanism to maintain cholesterol homeostasis: quick adjustment of plasma membrane chemical potentials
to control cholesterol influx and efflux. We have identified protein scaffolded domains, as typified by caveolae,
as sites at which cells sense and rapidly respond to external cholesterol. The abundance and total amount of
cholesterol that resides in caveolae are determined by the extent of phosphorylation at position Ser80 of
caveolin-1, the foundational protein of the domain. The shuttling of cholesterol between scaffolded domains
and the surround which must result upon Ser80 phosphorylation alters cholesterol chemical potential. We
therefore hypothesize that signaling cascades initiated within scaffolded domains are responsible for
maintaining cholesterol homeostasis when cells are subjected to changes in external cholesterol and to growth
factors. We further posit that these activated signaling cascades feed back to the plasma membrane to maintain
chemical potentials. Cells will be stimulated with growth factors and relevant signaling cascades will be
identified. The abundance of caveolae will be assessed by measuring the FRET (fluorescence resonance energy
transfer) signals between caveolins. Our preliminary evidence strongly implicates that growth factors and/or
changes in the level of external cholesterol stimulate the PI3K/Akt/mTOR signaling pathway that feeds back to
achieve cholesterol homeostasis. Optogenetic techniques will be used to determine whether it and/or others are
indeed responsible for control of cholesterol. Parallel experiments using the same strategies will determine if
flotillins, analogous to caveolin, also serve as sensors/regulators of cholesterol chemical potentials.
摘要
了解细胞用来维持胆固醇动态平衡的机制在细胞生物学和许多
疾病。为此,必须测量细胞质膜中胆固醇的化学活性。
因为活动控制着胆固醇对细胞过程的影响。到目前为止,质膜胆固醇
浓度已被用来量化胆固醇的活性。但胆固醇的活性是由它的
化学势;浓度对膜活性有贡献,但不能准确反映膜的活性。因为一个
目前还没有测量胆固醇化学势的方法,不可能正确地
评估胆固醇的许多影响,包括对细胞信号的影响。我们现在已经开发出了方法
这样做。这些方法和我们设计的一种新的灌注荧光测定仪使我们能够遵循
实时测定质膜胆固醇的化学势。我们很快就发现细胞
通过调节血浆胆固醇化学势来应对细胞外胆固醇的变化
在不改变细胞总胆固醇含量的情况下,膜。这一发现揭示了一个以前未知的
维持胆固醇稳态的机制:质膜化学势的快速调节
控制胆固醇的流入和流出。我们已经确定了蛋白质支架结构域,以小窝为代表,
作为细胞感知和快速反应外界胆固醇的场所。的丰度和总量
小窝中的胆固醇是由SER80位的磷酸化程度决定的
Caveolin-1,该结构域的基础蛋白。胆固醇在支架结构域之间的穿梭
而必须导致Ser80磷酸化的周围环境改变了胆固醇的化学势。我们
因此,假设在脚手架域内启动的信令级联负责
当细胞受到外部胆固醇变化和生长的影响时,维持胆固醇稳态
各种因素。我们进一步假设,这些激活的信号级联反馈到质膜以维持
化学势。细胞将受到生长因子的刺激,相关的信号级联将被
确认身份。小窝的丰度将通过测量FRET(荧光共振能量)来评估
在洞穴之间传递)信号。我们的初步证据有力地表明,生长因子和/或
外部胆固醇水平的变化刺激PI3K/Akt/mTOR信号通路反馈到
实现胆固醇动态平衡。光遗传技术将被用来确定它和/或其他人是否
确实负责控制胆固醇。使用相同策略的平行实验将确定
Flotillins类似于小窝蛋白,也是胆固醇化学势的感应器/调节器。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FREDRIC S COHEN其他文献
FREDRIC S COHEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FREDRIC S COHEN', 18)}}的其他基金
Biophysical Mechanisms of Cholesterol Homeostasis
胆固醇稳态的生物物理机制
- 批准号:
10454109 - 财政年份:2021
- 资助金额:
$ 34.7万 - 项目类别:
Biophysical Mechanisms of Cholesterol Homeostasis
胆固醇稳态的生物物理机制
- 批准号:
10117604 - 财政年份:2021
- 资助金额:
$ 34.7万 - 项目类别:
Molecular Regulation of Fusion: Voltage Dependence and Local Physical Interaction
聚变的分子调控:电压依赖性和局部物理相互作用
- 批准号:
8824948 - 财政年份:2013
- 资助金额:
$ 34.7万 - 项目类别:
Molecular Regulation of Fusion: Voltage Dependence and Local Physical Interaction
聚变的分子调控:电压依赖性和局部物理相互作用
- 批准号:
8432279 - 财政年份:2013
- 资助金额:
$ 34.7万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:32170319
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
- 批准号:31372080
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
- 批准号:81172529
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
- 批准号:81070952
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
- 批准号:30672361
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 34.7万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 34.7万 - 项目类别:
Continuing Grant
Alkane transformations through binding to metals
通过与金属结合进行烷烃转化
- 批准号:
DP240103289 - 财政年份:2024
- 资助金额:
$ 34.7万 - 项目类别:
Discovery Projects
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 34.7万 - 项目类别:
Fellowship
Conformations of musk odorants and their binding to human musk receptors
麝香气味剂的构象及其与人类麝香受体的结合
- 批准号:
EP/X039420/1 - 财政年份:2024
- 资助金额:
$ 34.7万 - 项目类别:
Research Grant
Postdoctoral Fellowship: OPP-PRF: Understanding the Role of Specific Iron-binding Organic Ligands in Governing Iron Biogeochemistry in the Southern Ocean
博士后奖学金:OPP-PRF:了解特定铁结合有机配体在控制南大洋铁生物地球化学中的作用
- 批准号:
2317664 - 财政年份:2024
- 资助金额:
$ 34.7万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of Real-time, Ultrasensitive Electrical Transduction of Biological Binding Events for Pathogen and Disease Detection
I-Corps:生物结合事件的实时、超灵敏电转导在病原体和疾病检测中的转化潜力
- 批准号:
2419915 - 财政年份:2024
- 资助金额:
$ 34.7万 - 项目类别:
Standard Grant
CRII: OAC: Development of a modular framework for the modeling of peptide and protein binding to membranes
CRII:OAC:开发用于模拟肽和蛋白质与膜结合的模块化框架
- 批准号:
2347997 - 财政年份:2024
- 资助金额:
$ 34.7万 - 项目类别:
Standard Grant
How lipid binding proteins shape the activity of nuclear hormone receptors
脂质结合蛋白如何影响核激素受体的活性
- 批准号:
DP240103141 - 财政年份:2024
- 资助金额:
$ 34.7万 - 项目类别:
Discovery Projects
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
- 批准号:
MR/Y013131/1 - 财政年份:2024
- 资助金额:
$ 34.7万 - 项目类别:
Research Grant