Efficient patient-specific cell generation by image-guidance
通过图像引导高效生成患者特异性细胞
基本信息
- 批准号:8509778
- 负责人:
- 金额:$ 98.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-02-15 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:BiotechnologyBrain DiseasesCardiac MyocytesCell Culture SystemCell Differentiation processCell Fate ControlCellsCellular MorphologyComputer softwareDataDevelopmentDiagnosisEducational process of instructingEvaluationFibroblastsGenerationsGoalsGovernmentHarvestHealthHealthcareHeartHumanImageImaging technologyInstitutesKineticsLifeMachine LearningMedicineMetricMonitorOutcomePatientsPattern RecognitionPerformancePersonsPharmaceutical PreparationsPhaseProcessProductionProtocols documentationQuality ControlSamplingStagingStaining methodStainsStem cellsSurfaceSystemTechnologyTestingTimeWorkalanine aminopeptidasebasecell typecellular imagingcostcost effectivenessdisease diagnosisdrug discoverydrug testinghuman embryonic stem cellimprovedinduced pluripotent stem cellpatient populationprototypestem cell technologytoolusability
项目摘要
DESCRIPTION (provided by applicant): This fast-track proposal applies advanced kinetic image pattern recognition (KIPR) technologies to predict induced pluripotent stem cell (iPSC) reprogramming colonies' differentiation outcomes for significantly improved yield and robustness of differentiation protocols. The objectives of the proposed tool are 1) Teaching: creation of scores for induced colony differentiation outcome prediction by machine learning; 2) Reprogramming: optimal reprogramming harvest time determination by continuous colony score monitoring; 3) Differentiation: selection of colonies with the highest prediction scores for differentiation at the reprogramming harvest time; 4) Differentiation: cell cluster quality control by continuous monitoring during differentiation. The specific aims of this fast-track proposal are Phase I: 1) Extend SVCell for the prediction of induced colony differentiation outcomes ; 2) Validate that prediction of colony differentiation outcomes can improve the yield of CM differentiation. Phase II: 1) Validate that the integrated system can be taught to be robust and high yielding for a diverse set of human fibroblast input samples and different reprogramming / differentiation protocols; 2) Integrate SVCell with a state-of-the-art continuous cell imaging and culture system to create a prototype patient-specific cell generation system; 3) Validate the integrated system as a patient-specific cell generation product. The ultimate goal of this fast-track proposal is to develop and validate an image-guided efficient patient-specific cardiomyocyte generation system. This will be achieved by integrating our established SVCell software containing advanced KIPR technologies with a live cell imaging technology to synthesize state-of-the-art cell fate control protocols against iPSC. Patient-specific cell generation systems could "personalize" medicine by reprogramming patient-specific cells and directing their differentiation to specific lineages (e.g. heart, brain) for disease diagnosis and personalized drug testing. Successful development of the patient-specific cell generation system of this proposal could catalyze personalized medicine and revolutionize health care in both diagnosis and therapy.
描述(由申请人提供):该快速通道提案应用先进的动力学图像模式识别(KIPR)技术来预测诱导多能干细胞(iPSC)重编程集落的分化结果,以显著提高分化方案的产量和稳健性。所提出的工具的目标是1)教导:通过机器学习创建用于诱导集落分化结果预测的分数; 2)重编程:通过连续集落分数监测确定最佳重编程收获时间; 3)分化:选择在重编程收获时间具有最高预测分数的集落用于分化; 4)分化:通过在分化期间连续监测来控制细胞簇质量。该快速通道提案的具体目标是第一阶段:1)扩展SVCell用于预测诱导集落分化结果; 2)证实集落分化结果的预测可以提高CM分化的产量。第二阶段:1)证明可以教导集成系统对于不同的人成纤维细胞输入样品组和不同的重编程/分化方案是稳健和高产的; 2)将SVCell与最先进的连续细胞成像和培养系统集成以创建原型患者特异性细胞生成系统; 3)将集成系统作为患者特异性细胞生成产品。这个快速通道提案的最终目标是开发和验证一个图像引导的有效的患者特异性心肌细胞生成系统。这将通过将我们已建立的SVCell软件(包含先进的KIPR技术)与活细胞成像技术相结合来实现,以合成针对iPSC的最先进的细胞命运控制方案。患者特异性细胞生成系统可以通过重新编程患者特异性细胞并将其分化为特定谱系(例如心脏,大脑)来“个性化”医学,用于疾病诊断和个性化药物测试。该提案的患者特异性细胞生成系统的成功开发可以催化个性化医疗,并在诊断和治疗方面彻底改变医疗保健。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shih-Jong J Lee其他文献
Shih-Jong J Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shih-Jong J Lee', 18)}}的其他基金
Intelligent connectomic analysis tool for dense neuronal circuits
用于密集神经元回路的智能连接组分析工具
- 批准号:
10019731 - 财政年份:2020
- 资助金额:
$ 98.35万 - 项目类别:
AI platform for microscopy image restoration and virtual staining
用于显微镜图像修复和虚拟染色的人工智能平台
- 批准号:
9909318 - 财政年份:2020
- 资助金额:
$ 98.35万 - 项目类别:
Intelligent connectomic analysis tool for dense neuronal circuits
用于密集神经元回路的智能连接组分析工具
- 批准号:
10311303 - 财政年份:2020
- 资助金额:
$ 98.35万 - 项目类别:
AI platform for microscopy image restoration and virtual staining
用于显微镜图像修复和虚拟染色的人工智能平台
- 批准号:
10328064 - 财政年份:2020
- 资助金额:
$ 98.35万 - 项目类别:
Kinetic Phenotype Discovery Informatics for Neurological Diseases
神经系统疾病的动力学表型发现信息学
- 批准号:
9769172 - 财政年份:2016
- 资助金额:
$ 98.35万 - 项目类别:
Kinetic Phenotype Discovery Informatics for Neurological Diseases
神经系统疾病的动力学表型发现信息学
- 批准号:
10321425 - 财政年份:2016
- 资助金额:
$ 98.35万 - 项目类别:
A 3D particle tracking tool for next generation neuroscience microscopy
用于下一代神经科学显微镜的 3D 粒子跟踪工具
- 批准号:
8648198 - 财政年份:2014
- 资助金额:
$ 98.35万 - 项目类别:
Efficient patient-specific cell generation by image-guidance
通过图像引导高效生成患者特异性细胞
- 批准号:
8697110 - 财政年份:2011
- 资助金额:
$ 98.35万 - 项目类别:
Efficient patient-specific cell generation by image-guidance
通过图像引导高效生成患者特异性细胞
- 批准号:
8392472 - 财政年份:2011
- 资助金额:
$ 98.35万 - 项目类别:
Efficient patient-specific cell generation by image-guidance
通过图像引导高效生成患者特异性细胞
- 批准号:
8058635 - 财政年份:2011
- 资助金额:
$ 98.35万 - 项目类别:
相似海外基金
Illuminating Brain Diseases Using Smart Multiread-out MRI
使用智能多重读出 MRI 阐明脑部疾病
- 批准号:
MR/X034046/1 - 财政年份:2024
- 资助金额:
$ 98.35万 - 项目类别:
Fellowship
Understanding mechanisms of memory engram updating following memory retrieval and improvement of brain diseases by targeting memory updating
了解记忆检索后记忆印迹更新的机制以及通过靶向记忆更新改善脑部疾病
- 批准号:
22H00358 - 财政年份:2022
- 资助金额:
$ 98.35万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
LEAP-HI: Tackling Brain Diseases with Mechanics: A Data-Driven Approach to Merge Advanced Neuroimaging and Multi-Physics Modeling
LEAP-HI:用力学解决脑部疾病:一种融合先进神经成像和多物理场建模的数据驱动方法
- 批准号:
2227232 - 财政年份:2022
- 资助金额:
$ 98.35万 - 项目类别:
Standard Grant
Engineering Human Brain Neurovascular Niche for Modeling Brain Diseases
工程人脑神经血管生态位以模拟脑疾病
- 批准号:
10478162 - 财政年份:2021
- 资助金额:
$ 98.35万 - 项目类别:
I-Corps: Drug delivery systems for treating degenerative brain diseases
I-Corps:治疗退行性脑疾病的药物输送系统
- 批准号:
2135052 - 财政年份:2021
- 资助金额:
$ 98.35万 - 项目类别:
Standard Grant
Engineered AAV vectors for combinatorial treatment of rare genetic brain diseases
用于罕见遗传性脑部疾病组合治疗的工程 AAV 载体
- 批准号:
10414342 - 财政年份:2021
- 资助金额:
$ 98.35万 - 项目类别:
Engineering Human Brain Neurovascular Niche for Modeling Brain Diseases
工程人脑神经血管生态位以模拟脑疾病
- 批准号:
10303483 - 财政年份:2021
- 资助金额:
$ 98.35万 - 项目类别:
Evaluation for metabolic brain diseases using cerebral oxygen metabolism imaging
利用脑氧代谢成像评估代谢性脑疾病
- 批准号:
20K08136 - 财政年份:2020
- 资助金额:
$ 98.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
LEAP-HI: Tackling Brain Diseases with Mechanics: A Data-Driven Approach to Merge Advanced Neuroimaging and Multi-Physics Modeling
LEAP-HI:用力学解决脑部疾病:一种融合先进神经成像和多物理场建模的数据驱动方法
- 批准号:
1953323 - 财政年份:2020
- 资助金额:
$ 98.35万 - 项目类别:
Standard Grant
Medialising Brain Diseases: Interactions between Research and Mass Media
治疗脑部疾病:研究与大众媒体之间的相互作用
- 批准号:
411038189 - 财政年份:2019
- 资助金额:
$ 98.35万 - 项目类别:
Research Grants