AI platform for microscopy image restoration and virtual staining

用于显微镜图像修复和虚拟染色的人工智能平台

基本信息

  • 批准号:
    10328064
  • 负责人:
  • 金额:
    $ 11.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-01 至 2021-03-12
  • 项目状态:
    已结题

项目摘要

AI Platform for Microscopy Image Restoration and Virtual Staining Project Summary: Fluorescence microscopy has enabled many major discoveries in biomedical sciences. Despite the rapid advancements in optics, lasers, probes, cameras and novel techniques, major factors such as spatial and temporal resolution, light exposure, signal-to-noise, depth of penetration and probe spectra continue to limit the types of experiments that are possible. Deep learning (DL) algorithms are well suited for image-based problems like SNR/super-resolution restoration and virtual staining, which have great enabling potentials for microscopy experiments. Previously impossible experiments could be realized such as achieving high signal-to-noise and/or spatial-temporal resolution without photobleaching/phototoxicity; simultaneously observing many image channels without interfering with native processes, etc. This could pave the way for a quantum leap forward in microscopy-based discoveries that elucidate biological functions and the mechanisms of disorders, and enable new diagnostics and therapies for human diseases. However, these new methods have not been widely translated to new microscopy experiments. The delay is due to several practical hurdles and challenges such as required expertise, computing and trust. In order to accelerate the adoption of DL in microscopy, novel AI platform tailored for biologists are needed for training, applying and validating DL models and outputs. The present project aims to develop an AI platform for microscopy image restoration and virtual staining called AI for Restoring and Staining (AIRS) platform. With our collaborator, Dr. Hari Shroff (National Institute of Biomedical Imaging and Bioengineering) we have successfully created DL models for SNR restoration, super-resolution restoration and virtual staining for a variety of imaging conditions and organelles in our preliminary studies. The AIRS platform intends to (1)provide a comprehensive suite of validated DL models for microscopy restoration and virtual staining applications including SNR restoration, super-resolution restoration, spatial deconvolution, spectral unmixing, prediction of 3d from 2d images, organelle virtual staining and analysis; (2)provide plug and play for common microscopy experiments; (3)provide semi-automatic update training to tailor DL models to match advanced microscopy experiments; (4)provide user friendly support for new DL model training for pioneering microscopy experiments; (5)provide confidence scores to assess the output results by a DL model, (6) provide DL models that avoid image artifact (hallucination) and allow continuous learning and evolution; (7) and be able to access the required computing infrastructure and database connection.
人工智能显微镜图像恢复和虚拟染色平台

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shih-Jong J Lee其他文献

Shih-Jong J Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shih-Jong J Lee', 18)}}的其他基金

Intelligent connectomic analysis tool for dense neuronal circuits
用于密集神经元回路的智能连接组分析工具
  • 批准号:
    10019731
  • 财政年份:
    2020
  • 资助金额:
    $ 11.42万
  • 项目类别:
AI platform for microscopy image restoration and virtual staining
用于显微镜图像修复和虚拟染色的人工智能平台
  • 批准号:
    9909318
  • 财政年份:
    2020
  • 资助金额:
    $ 11.42万
  • 项目类别:
Intelligent connectomic analysis tool for dense neuronal circuits
用于密集神经元回路的智能连接组分析工具
  • 批准号:
    10311303
  • 财政年份:
    2020
  • 资助金额:
    $ 11.42万
  • 项目类别:
Kinetic Phenotype Discovery Informatics for Neurological Diseases
神经系统疾病的动力学表型发现信息学
  • 批准号:
    9769172
  • 财政年份:
    2016
  • 资助金额:
    $ 11.42万
  • 项目类别:
Kinetic Phenotype Discovery Informatics for Neurological Diseases
神经系统疾病的动力学表型发现信息学
  • 批准号:
    10321425
  • 财政年份:
    2016
  • 资助金额:
    $ 11.42万
  • 项目类别:
A 3D particle tracking tool for next generation neuroscience microscopy
用于下一代神经科学显微镜的 3D 粒子跟踪工具
  • 批准号:
    8648198
  • 财政年份:
    2014
  • 资助金额:
    $ 11.42万
  • 项目类别:
Efficient patient-specific cell generation by image-guidance
通过图像引导高效生成患者特异性细胞
  • 批准号:
    8697110
  • 财政年份:
    2011
  • 资助金额:
    $ 11.42万
  • 项目类别:
Efficient patient-specific cell generation by image-guidance
通过图像引导高效生成患者特异性细胞
  • 批准号:
    8392472
  • 财政年份:
    2011
  • 资助金额:
    $ 11.42万
  • 项目类别:
Efficient patient-specific cell generation by image-guidance
通过图像引导高效生成患者特异性细胞
  • 批准号:
    8058635
  • 财政年份:
    2011
  • 资助金额:
    $ 11.42万
  • 项目类别:
Efficient patient-specific cell generation by image-guidance
通过图像引导高效生成患者特异性细胞
  • 批准号:
    8509778
  • 财政年份:
    2011
  • 资助金额:
    $ 11.42万
  • 项目类别:

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目

相似海外基金

High speed multi modal in-situ Transmission Electron Microscopy platform
高速多模态原位透射电子显微镜平台
  • 批准号:
    LE240100060
  • 财政年份:
    2024
  • 资助金额:
    $ 11.42万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
  • 批准号:
    10679749
  • 财政年份:
    2023
  • 资助金额:
    $ 11.42万
  • 项目类别:
Developing an ultra-high throughput droplet microfluidic workflow for genetic circuit characterization
开发用于遗传电路表征的超高通量液滴微流体工作流程
  • 批准号:
    10680017
  • 财政年份:
    2023
  • 资助金额:
    $ 11.42万
  • 项目类别:
Temporospatial Single-Cell Characterization of Angiogenesis and Myocardial Regeneration in Small and Large Mammals
小型和大型哺乳动物血管生成和心肌再生的时空单细胞表征
  • 批准号:
    10751870
  • 财政年份:
    2023
  • 资助金额:
    $ 11.42万
  • 项目类别:
A scalable cloud-based framework for multi-modal mapping across single neuron omics, morphology and electrophysiology
一个可扩展的基于云的框架,用于跨单个神经元组学、形态学和电生理学的多模式映射
  • 批准号:
    10725550
  • 财政年份:
    2023
  • 资助金额:
    $ 11.42万
  • 项目类别:
Detecting cell to cell contacts in zebrafish with a synthetic receptor methodology
使用合成受体方法检测斑马鱼的细胞与细胞接触
  • 批准号:
    10645331
  • 财政年份:
    2023
  • 资助金额:
    $ 11.42万
  • 项目类别:
Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
  • 批准号:
    10699828
  • 财政年份:
    2023
  • 资助金额:
    $ 11.42万
  • 项目类别:
Surmounting substance use disorder using an ultra-long acting injectable platform.
使用超长效注射平台克服药物滥用障碍。
  • 批准号:
    10586277
  • 财政年份:
    2023
  • 资助金额:
    $ 11.42万
  • 项目类别:
Single-Molecule High-Confidence Detection of miRNA Cancer Biomarkers
miRNA 癌症生物标志物的单分子高置信度检测
  • 批准号:
    10612611
  • 财政年份:
    2023
  • 资助金额:
    $ 11.42万
  • 项目类别:
AI enhanced lifetime-based mesoscopic in vivo imaging of tissue molecular heterogeneity
人工智能增强了基于寿命的组织分子异质性细观体内成像
  • 批准号:
    10585510
  • 财政年份:
    2023
  • 资助金额:
    $ 11.42万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了