Kinetic Phenotype Discovery Informatics for Neurological Diseases
神经系统疾病的动力学表型发现信息学
基本信息
- 批准号:9769172
- 负责人:
- 金额:$ 60.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-11-16
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptedAdoptionAffectAge of OnsetAreaBedsBiological ModelsBiological ProductsCell modelCell physiologyCellsCharacteristicsClinicalCollaborationsColorComplementDataDiagnosisDiagnosticDiseaseDrug IndustryEvaluationEventFailureFluorescent ProbesGene Expression ProfilingGenomicsGovernmentHealthcareImageIn VitroIncidenceInformaticsInvestigationKineticsMethodsMicroscopyMorphologyNeuronsPathogenicityPatient RepresentativePatientsPatternPersonsPharmaceutical PreparationsPhasePhenotypeProcessRNAReporterResearchResolutionSamplingScientistSensitivity and SpecificityStratificationSystemTechnologyTestingTherapeuticTimeTranslational ResearchUpdateValidationanalytical toolbaseblindcellular imagingdisease phenotypeimaging studyinnovationinstrumentinterestmicroscopic imagingnervous system disordernext generationpatient populationpatient variabilityprototypequantumtherapy developmenttime usetool
项目摘要
Project Summary
Neurological disorders significantly outnumber diseases in other therapeutic areas and are growing in
incidence faster than any other disease classes. However, the pharmaceutical industry has been unsuccessful in
coming up with effective drugs. A big factor in these failures has been a lack of adequate model systems for
fundamental disease understanding affecting both diagnosis and treatment. There is therefore a strong,
emerging interest in the use of patient-derived cell models to understand the pathogenic mechanisms
underlying neurological disease phenotypes. To gain a true understanding of these mechanisms and
phenotypes, it is necessary to analyze dynamic events using time-lapse microscopy. These tools complement
RNA profiling studies by enabling single-cell resolution of pathogenic processes at high-throughput, enabling
investigation of highly diverse or largely replicative patient sets at an unprecedented scale. To discover
predictive disease phenotypes across a large representative patient sample, a systematic, unbiased approach is
needed to mine time-lapse microscopy image sequences, patient clinical and concomitant data. There is
therefore a critical need for a next-generation analytical tool to enable the discovery of disease predictive
phenotypes robust to patient variations.
Thus, we propose to develop a teachable kinetic informatics discovery (KID) tool based on a
hierarchical inference framework. If proven, the KID tool would be rapidly adopted for translational research
using patient-derived cell models in many diseases. It could facilitate a paradigm shift towards broad adoption
of patient-cell models for therapeutics discovery, optimization, stratification and diagnostic discovery.
Our immediate objective for this Fast-Track project is to develop and validate the KID tool by showing
that it can classify patients on the basis of disease and disease characteristics such as age-of-onset. In Phase I
we will develop the prototype KID tool and preliminary patient panel. We will prove feasibility by discovering
phenotypes and then accurately scoring patients based on the phenotypes in blind tests. In Phase II we will
develop the full patient panel and pre-product KID tool. We will validate by scoring patients in blind tests and
validate phenotypes through corroboration with targeted transcriptional profiling and genomic tests. We will
reduce the phenotypes to a single time point and show efficacy in a targeted compound screen.
The Specific Aims are: Phase 1, (Aim 1): Develop the prototype KID tool and preliminary patient panel
incorporating neuronal firing reporter. (Aim 2): Verify the prototype KID tool in a preliminary patient panel.
Phase II, (Aim 1): Complete the beta prototype KID tool and patient panel for KID tool validation. (Aim 2):
Disease phenotype discovery and verification in the full patient panel. (Aim 3): Disease phenotype validation.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shih-Jong J Lee其他文献
Shih-Jong J Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shih-Jong J Lee', 18)}}的其他基金
Intelligent connectomic analysis tool for dense neuronal circuits
用于密集神经元回路的智能连接组分析工具
- 批准号:
10019731 - 财政年份:2020
- 资助金额:
$ 60.19万 - 项目类别:
AI platform for microscopy image restoration and virtual staining
用于显微镜图像修复和虚拟染色的人工智能平台
- 批准号:
9909318 - 财政年份:2020
- 资助金额:
$ 60.19万 - 项目类别:
Intelligent connectomic analysis tool for dense neuronal circuits
用于密集神经元回路的智能连接组分析工具
- 批准号:
10311303 - 财政年份:2020
- 资助金额:
$ 60.19万 - 项目类别:
AI platform for microscopy image restoration and virtual staining
用于显微镜图像修复和虚拟染色的人工智能平台
- 批准号:
10328064 - 财政年份:2020
- 资助金额:
$ 60.19万 - 项目类别:
Kinetic Phenotype Discovery Informatics for Neurological Diseases
神经系统疾病的动力学表型发现信息学
- 批准号:
10321425 - 财政年份:2016
- 资助金额:
$ 60.19万 - 项目类别:
A 3D particle tracking tool for next generation neuroscience microscopy
用于下一代神经科学显微镜的 3D 粒子跟踪工具
- 批准号:
8648198 - 财政年份:2014
- 资助金额:
$ 60.19万 - 项目类别:
Efficient patient-specific cell generation by image-guidance
通过图像引导高效生成患者特异性细胞
- 批准号:
8697110 - 财政年份:2011
- 资助金额:
$ 60.19万 - 项目类别:
Efficient patient-specific cell generation by image-guidance
通过图像引导高效生成患者特异性细胞
- 批准号:
8392472 - 财政年份:2011
- 资助金额:
$ 60.19万 - 项目类别:
Efficient patient-specific cell generation by image-guidance
通过图像引导高效生成患者特异性细胞
- 批准号:
8509778 - 财政年份:2011
- 资助金额:
$ 60.19万 - 项目类别:
Efficient patient-specific cell generation by image-guidance
通过图像引导高效生成患者特异性细胞
- 批准号:
8058635 - 财政年份:2011
- 资助金额:
$ 60.19万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 60.19万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 60.19万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 60.19万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 60.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 60.19万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 60.19万 - 项目类别:
Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 60.19万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 60.19万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 60.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 60.19万 - 项目类别:
Research Fellowships