Investigating the molecular and mechanical regulation of pulsed actomyosin contra

研究脉冲肌动球蛋白拮抗剂的分子和机械调节

基本信息

项目摘要

6. Project Summary/Abstract Morphogenesis is the process whereby simple tissues, such as epithelial sheets, are sculpted into complex organs. Morphogenesis is driven by forces generated by individual cells, which result in changes in cell shape and tissue mechanics. During development, these changes are tightly regulated in space and time by both genetic and mechanical signals. During cancer, these signals are often improperly activated, resulting in abnormal cell behavior that leads to tumor cell growth and metastasis. Therefore, understanding how cells and tissues generate forces is essential to understand development and cancer. Because morphogenesis depends on the complex interplay of molecular and mechanical signals, identifying the mechanisms that drive morphogenesis requires a multidisciplinary approach that includes biochemistry, genetics, cell and developmental biology, physics, and mathematical modeling. As a graduate student in David Drubin's lab at UC Berkeley, I was trained in cell biology, biochemistry, and genetics. Specifically, I gained much experience working with the actin cytoskeleton, which generates mechanical forces in cells. As a postdoctoral fellow in Eric Wieschaus' lab at Princeton University, I have learned Drosophila biology and have begun to develop quantitative and computational skills to analyze the dynamics of multicellular systems. Specifically, I have analyzed apical constriction, a common cell shape change that facilitates epithelial bending and tissue invagination. These complementary research experiences provide me with a unique perspective and a range of technical expertise that I will use in my independent lab to study how the actin cytoskeleton generates forces during development. In the Wieschaus lab, I discovered that apical constriction is driven by pulsed actomyosin contractions, which incrementally constrict the cell. Pulsed contractions are regulated by the transcription factors Twist and Snail, whose human homologues play important roles in cancer cell metastasis. In the current research plan, I propose experiments that will elucidate the mechanisms that regulate pulsed contraction. This will be achieved by integrating live-cell imaging, quantitative image analysis, genetics, biochemistry, and mathematical modeling. One goal will be to identify the molecular mechanisms that control pulsed contractions downstream of the transcription factors Twist and Snail. A second goal will be to determine how mechanical forces transmitted through the tissue regulate cell shape change and cytoskeletal organization during morphogenesis. To accomplish the goals of my proposal, I need additional training in quantitative image analysis, mathematical modeling, and physics. This will allow me to more effectively analyze the dynamics of the actin cytoskeleton and the physical interactions between cells in multicellular systems, which will be essential foundations for my future independent lab. The Wieschaus lab is the ideal environment to obtain this training because we are part of the Center for Quantitative Biology at Princeton University. Eric Wieschaus is an excellent mentor who strongly believes in quantifying experimental data and developing quantitative models to explain this data. I also collaborate with a theoretical physicist at Princeton, Matthias Kaschube, who is an expert on quantitative image analysis. Furthermore, Princeton offers a variety of seminars, classes, and resources that are at my disposal to further my education in quantitative biology. The additional training I obtain at Princeton will greatly improve my skills in quantitative analysis and modeling, and will increase the quality and impact of my future research. Overall, this experience will help me achieve my goal of running a multidisciplinary lab that performs cutting edge research on morphogenesis.
6.项目总结/摘要 形态发生是指简单组织,如上皮层, 复杂的器官形态发生是由单个细胞产生的力驱动的, 在细胞形状和组织力学方面。在发育过程中,这些变化在空间上受到严格的控制, 基因和机械信号的影响。在癌症期间,这些信号通常被不适当地激活, 导致异常的细胞行为,从而导致肿瘤细胞生长和转移。因此,我们认为, 了解细胞和组织如何产生力对于了解发育和癌症至关重要。 因为形态发生依赖于分子和机械信号的复杂相互作用, 确定驱动形态发生的机制需要多学科的方法,包括 生物化学、遗传学、细胞和发育生物学、物理学和数学建模。作为 作为加州大学伯克利分校大卫·德鲁宾实验室的研究生,我接受了细胞生物学、生物化学和 遗传学具体来说,我获得了很多与肌动蛋白细胞骨架有关的经验, 细胞中的机械力作为普林斯顿大学Eric Wieschaus实验室的博士后, 我学习了果蝇生物学,并开始发展定量和计算技能, 多细胞系统的动力学具体来说,我分析了顶端收缩,一种常见的细胞形状 促进上皮弯曲和组织内陷的变化。这些补充研究 这些经验为我提供了独特的视角和一系列技术专长,我将在我的工作中使用它们。 独立实验室研究肌动蛋白细胞骨架如何在发育过程中产生力量。 在Wieschaus实验室,我发现顶端收缩是由脉冲肌动球蛋白驱动的 收缩,逐渐收缩细胞。脉冲收缩受转录调节 因子Twist和Snail,其人类同源物在癌细胞转移中起重要作用。在 目前的研究计划,我提出的实验,将阐明机制,调节脉冲 收缩。这将通过整合活细胞成像,定量图像分析,遗传学, 生物化学和数学建模。一个目标是确定分子机制, 控制转录因子Twist和Snail下游的脉冲收缩。第二个目标是 以确定通过组织传递的机械力如何调节细胞形状变化, 细胞骨架组织在形态发生。 为了实现我的建议的目标,我需要在定量图像分析方面进行额外的培训, 数学建模和物理学。这将使我能够更有效地分析 肌动蛋白细胞骨架和多细胞系统中细胞之间的物理相互作用,这将是 为我未来的独立实验室奠定了基础Wieschaus实验室是获得 因为我们是普林斯顿大学定量生物学中心的一部分。埃里克 Wieschaus是一位优秀的导师,他坚信量化实验数据和开发 量化模型来解释这些数据。我还与普林斯顿的理论物理学家马蒂亚斯合作 他是定量图像分析专家。此外,普林斯顿大学还提供各种 研讨会,课程和资源,在我的处置,以进一步我的教育在定量生物学。 我在普林斯顿大学接受的额外培训将大大提高我的定量分析技能, 建模,并将提高我未来研究的质量和影响。总的来说,这一经验将有助于 我实现了我的目标,运行一个多学科的实验室,进行尖端的研究, 形态发生

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adam Christopher Martin其他文献

Adam Christopher Martin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adam Christopher Martin', 18)}}的其他基金

Tissue morphogenesis: From signals to forces
组织形态发生:从信号到力量
  • 批准号:
    10330672
  • 财政年份:
    2022
  • 资助金额:
    $ 23.72万
  • 项目类别:
Tissue morphogenesis: From signals to forces
组织形态发生:从信号到力量
  • 批准号:
    10543998
  • 财政年份:
    2022
  • 资助金额:
    $ 23.72万
  • 项目类别:
Investigating the generation of mechanical forces during tissue invagination
研究组织内陷过程中机械力的产生
  • 批准号:
    9260898
  • 财政年份:
    2013
  • 资助金额:
    $ 23.72万
  • 项目类别:
Investigating the generation of mechanical forces during tissue invagination
研究组织内陷过程中机械力的产生
  • 批准号:
    8481857
  • 财政年份:
    2013
  • 资助金额:
    $ 23.72万
  • 项目类别:
Investigating the generation of mechanical forces during tissue invagination
研究组织内陷过程中机械力的产生
  • 批准号:
    8645656
  • 财政年份:
    2013
  • 资助金额:
    $ 23.72万
  • 项目类别:
Investigating the generation of mechanical forces during tissue invagination
研究组织内陷过程中机械力的产生
  • 批准号:
    9061419
  • 财政年份:
    2013
  • 资助金额:
    $ 23.72万
  • 项目类别:
Investigating the molecular and mechanical regulation of pulsed actomyosin contra
研究脉冲肌动球蛋白拮抗剂的分子和机械调节
  • 批准号:
    8211679
  • 财政年份:
    2010
  • 资助金额:
    $ 23.72万
  • 项目类别:
Investigating the molecular and mechanical regulation of pulsed actomyosin contra
研究脉冲肌动球蛋白拮抗剂的分子和机械调节
  • 批准号:
    8217255
  • 财政年份:
    2010
  • 资助金额:
    $ 23.72万
  • 项目类别:
Investigating the molecular and mechanical regulation of pulsed actomyosin contra
研究脉冲肌动球蛋白拮抗剂的分子和机械调节
  • 批准号:
    7770569
  • 财政年份:
    2010
  • 资助金额:
    $ 23.72万
  • 项目类别:

相似海外基金

Mechanical sensing mechanism of abnormal cell clusters by surrounding normal cells
周围正常细胞对异常细胞簇的机械传感机制
  • 批准号:
    20K20189
  • 财政年份:
    2020
  • 资助金额:
    $ 23.72万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Rvb1 and Rvb2 are physically and functionally connected during normal and abnormal cell growth
Rvb1 和 Rvb2 在正常和异常细胞生长过程中在物理和功能上相连
  • 批准号:
    352398
  • 财政年份:
    2016
  • 资助金额:
    $ 23.72万
  • 项目类别:
"Born to be Bad": Is Abnormal Cell Mobility Already Present At Initiation?
“生来就是坏的”:异常的细胞迁移性是否在开始时就已经存在?
  • 批准号:
    8686657
  • 财政年份:
    2014
  • 资助金额:
    $ 23.72万
  • 项目类别:
Molecular mechanisms of abnormal cell proliferation in acute lymphoblastic leukemia of Down syndrome
唐氏综合征急性淋巴细胞白血病细胞异常增殖的分子机制
  • 批准号:
    23591527
  • 财政年份:
    2011
  • 资助金额:
    $ 23.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of abnormal cell polarity in brain tumor cells
脑肿瘤细胞异常细胞极性分析
  • 批准号:
    21591887
  • 财政年份:
    2009
  • 资助金额:
    $ 23.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular mechanisms of abnormal cell proliferation in transient myeloproliferative disorder and acute megakaryoblastic leukemia of Down syndrome
唐氏综合症短暂性骨髓增生性疾病和急性巨核细胞白血病细胞异常增殖的分子机制
  • 批准号:
    20591241
  • 财政年份:
    2008
  • 资助金额:
    $ 23.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Role of cell adhesion signaling in the abnormal cell polarization of cancer cells
细胞粘附信号在癌细胞异常细胞极化中的作用
  • 批准号:
    17014055
  • 财政年份:
    2005
  • 资助金额:
    $ 23.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Creation and analysis of animal model monitoring abnormal cell replication
监测异常细胞复制的动物模型的创建和分析
  • 批准号:
    16380194
  • 财政年份:
    2004
  • 资助金额:
    $ 23.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Cl^-homeostasis failure and abnormal cell migration by endocrine disruptor cause damage to nervous system
内分泌干​​扰物导致的Cl^-稳态失灵和异常细胞迁移导致神经系统损伤
  • 批准号:
    15590207
  • 财政年份:
    2003
  • 资助金额:
    $ 23.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ROLES OF PLEIOTROPHIN IN NORMAL AND ABNORMAL CELL GROWTH
多效素在正常和异常细胞生长中的作用
  • 批准号:
    2683586
  • 财政年份:
    1995
  • 资助金额:
    $ 23.72万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了