Molecular and optogenetic tools for studying voltage in the brain
用于研究大脑电压的分子和光遗传学工具
基本信息
- 批准号:8416343
- 负责人:
- 金额:$ 9.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-02-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAffinityAntibodiesBehaviorBindingBiological AssayBrainCellsChimeric ProteinsCommunicationComplexDetectionDevelopmentDissectionDyesElectron TransportElectronsFluo-3FluorescenceFluorescence MicroscopyFuture GenerationsHabenulaHippocampus (Brain)ImageIn VitroInvestigationKnowledgeLabelLateralLengthLifeLightMeasurementMeasuresMembraneMembrane PotentialsMentorsMethodsMolecularMonitorNeurobiologyNeuronsPathologyPhasePhysiologyPopulationPositioning AttributePrimary Cell CulturesProcessProteinsRattusReaction TimeRelative (related person)ReportingResearchSamplingSideSliceSolidSolubilitySolutionsSpeedStaining methodStainsSystemTechniquesTestingVariantWorkattenuationbasechemical synthesischromophoredepressive symptomsdesignengineering designfluorescence imagingfluorophoreimprovedmultidisciplinarynoveloptogeneticspatch clampquantumrelating to nervous systemresponsesensorsmall moleculetooluptakevoltagewater solubility
项目摘要
DESCRIPTION (provided by applicant): Fluorescence imaging has become the fastest growing technique for monitoring neuronal activity in defined networks of neurons. We have recently developed a molecular wire-based fluorescent sensor for optically measuring voltage changes in mammalian neurons. This novel method makes use of a fluorophore connected to a quencher via a long molecular wire that spans a large fraction of the transmembrane voltage. At resting potentials, electron transfer from the quencher through the wire to the excited state of the fluorophore quenches the latter. Depolarization inhibits electron transfer and brightens fluorescence, just as Ca2+ binding dequenches indicators like fluo-3. These new molecular wire voltage sensitive dyes (VSDs) provide large and fast increases in fluorescence upon depolarization and can optically detect and resolve evoked and spontaneous action potentials in single trials in primary culture neurons. During the mentored phase, the proposed research seeks to expand upon these initial findings by characterizing molecular wire VSDs in a more complex context: mammalian brain slices. Previously synthesized genetically targeted versions of the molecular wire VSDs will enable the interrogation of defined sub-populations of neurons. As a test-case, specific neuronal populations in the lateral habenula, a region associated with depressive behavior, will be genetically targeted and examined with molecular wire VSDs . Another method for improving sensitivity via selective neuronal labeling is through the use of genetically encoded sensors. In the mentored phase, the intramolecular photoinduced electron transfer (PeT) rates of fluorescent protein fusions will be examined and the voltage sensitivity of
this process quantified to determine the optimal configuration for voltage sensitivity in vitro. During the independent phase, this knowledge will be exploited to generate genetically encoded voltage sensitive fluorescent proteins based on a PeT mechanism. As with the small molecule counterparts, a PeT- based approach to voltage sensing should provide large, fast fluorescent changes with negligible capacitative load. Membrane localization will be investigated via a number of strategies and the sensitivity of the probes in live cells measured. Finally, in the independent phase, a rational design and synthesis of improved molecular wire VSDs will be carried out. Systematic variation of the donor, acceptor, and molecular wire and analysis of the resulting quantum yields, voltage sensitivities and solubilities of the probes will reveal design principles enabling future generations of VSDs to provide greater sensitivity and precision in the detection of minute voltage changes in heterogeneous brain samples. Together, the components of the research strategy provide a multidisciplinary platform, spanning slice physiology, fluorescent protein design and engineering, and chemical synthesis, from which to begin to interrogate the circuitry of defined neurons within brain slices. The ability to make sensitive and precise measurements within sub-populations of neurons within heterogeneous systems will dramatically increase our understanding of the inner workings of the brain.
描述(由申请人提供): 荧光成像已经成为在确定的神经元网络中监测神经元活动的发展最快的技术。我们最近开发了一种基于分子导线的荧光传感器,用于光学测量哺乳动物神经元的电压变化。这种新方法利用荧光团通过跨越跨膜电压的大部分的长分子线连接到猝灭剂。在静息电位下,电子从猝灭剂通过导线转移到荧光团的激发态,从而猝灭后者。去极化抑制电子转移并使荧光变亮,就像Ca 2+结合使指示剂如fluo-3去猝灭一样。这些新的分子线电压敏感染料(VSD)在去极化时提供荧光的大而快速的增加,并且可以在原代培养神经元的单次试验中光学检测和分辨诱发和自发动作电位。在指导阶段,拟议的研究旨在通过在更复杂的背景下表征分子线VSD来扩展这些初步发现:哺乳动物脑切片。先前合成的分子线VSD的遗传靶向版本将使得能够询问限定的神经元亚群。作为一个测试案例,外侧缰(一个与抑郁行为相关的区域)中的特定神经元群体将被遗传靶向,并使用分子线VSD进行检查。通过选择性神经元标记提高灵敏度的另一种方法是通过使用遗传编码的传感器。在指导阶段,荧光蛋白融合的分子内光诱导电子转移(PeT)速率将被检查,
量化该过程以确定体外电压灵敏度的最佳配置。在独立阶段期间,将利用这些知识基于PeT机制生成遗传编码的电压敏感荧光蛋白。与小分子对应物一样,基于PeT的电压感测方法应该提供大的、快速的荧光变化,而电容负载可以忽略不计。将通过多种策略研究膜定位,并测量活细胞中探针的灵敏度。最后,在独立设计阶段,对分子线VSD进行了合理的设计和合成。供体、受体和分子线的系统变化以及对探针产生的量子产率、电压灵敏度和溶解度的分析将揭示设计原理,使未来几代的VSD能够在检测异质大脑样本中的微小电压变化时提供更高的灵敏度和精确度。总之,研究策略的组成部分提供了一个多学科的平台,跨越切片生理学,荧光蛋白设计和工程,化学合成,从开始询问脑切片内定义的神经元的电路。在异质系统中的神经元亚群中进行灵敏和精确测量的能力将大大增加我们对大脑内部工作的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Evan Walker Miller其他文献
Evan Walker Miller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Evan Walker Miller', 18)}}的其他基金
Interrogating Neuronal Membrane Potential Dynamics with Optical Voltage Sensors
用光学电压传感器询问神经元膜电位动态
- 批准号:
10367845 - 财政年份:2017
- 资助金额:
$ 9.06万 - 项目类别:
Interrogating Neuronal Membrane Potential Dynamics with Optical Voltage Sensors
用光学电压传感器询问神经元膜电位动态
- 批准号:
10534178 - 财政年份:2017
- 资助金额:
$ 9.06万 - 项目类别:
Interrogating Neuronal Membrane Potential Dynamics with Optical Voltage Sensors
用光学电压传感器询问神经元膜电位动态
- 批准号:
10084321 - 财政年份:2017
- 资助金额:
$ 9.06万 - 项目类别:
New Chemical Tools for Exploring Cellular Physiology
探索细胞生理学的新化学工具
- 批准号:
9143007 - 财政年份:2016
- 资助金额:
$ 9.06万 - 项目类别:
New Chemical Tools for Exploring Cellular Physiology
探索细胞生理学的新化学工具
- 批准号:
9981758 - 财政年份:2016
- 资助金额:
$ 9.06万 - 项目类别:
New Chemical Tools for Exploring Cellular Physiology
探索细胞生理学的新化学工具
- 批准号:
9753268 - 财政年份:2016
- 资助金额:
$ 9.06万 - 项目类别:
Molecular and optogenetic tools for studying voltage in the brain
用于研究大脑电压的分子和光遗传学工具
- 批准号:
8728414 - 财政年份:2013
- 资助金额:
$ 9.06万 - 项目类别:
Molecular and optogenetic tools for studying voltage in the brain
用于研究大脑电压的分子和光遗传学工具
- 批准号:
8735200 - 财政年份:2013
- 资助金额:
$ 9.06万 - 项目类别:
Molecular and optogenetic tools for studying voltage in the brain
用于研究大脑电压的分子和光遗传学工具
- 批准号:
8281248 - 财政年份:2012
- 资助金额:
$ 9.06万 - 项目类别:
A Genetically-Targeted Molecular Wire Fluorescent Sensor for Monitoring Voltage
用于监测电压的基因靶向分子线荧光传感器
- 批准号:
8117708 - 财政年份:2010
- 资助金额:
$ 9.06万 - 项目类别:
相似海外基金
Multidimensional development of high-affinity anti-glycan antibodies to fight deadly bacterial infections
多维开发高亲和力抗聚糖抗体以对抗致命细菌感染
- 批准号:
10549640 - 财政年份:2023
- 资助金额:
$ 9.06万 - 项目类别:
Computational modelling and simulation of antibodies to enhance binding affinity of a potential Burkholderia pseudomallei therapeutic
抗体的计算模型和模拟,以增强潜在的鼻疽伯克霍尔德氏菌治疗剂的结合亲和力
- 批准号:
2750554 - 财政年份:2021
- 资助金额:
$ 9.06万 - 项目类别:
Studentship
Affinity Biosensors for COVID-19 Antibodies
适用于 COVID-19 抗体的亲和生物传感器
- 批准号:
61319 - 财政年份:2020
- 资助金额:
$ 9.06万 - 项目类别:
Feasibility Studies
Directed Evolution of HIV Broadly Neutralizing Antibodies Using a Novel CRISPR-Engineered B cell in Vitro Affinity Maturation Platform
使用新型 CRISPR 工程 B 细胞在体外亲和力成熟平台定向进化 HIV 广泛中和抗体
- 批准号:
10013588 - 财政年份:2020
- 资助金额:
$ 9.06万 - 项目类别:
Affinity maturation and property changes of single-domain antibodies through repeated immunizations.
通过重复免疫,单域抗体的亲和力成熟和性质变化。
- 批准号:
20K07009 - 财政年份:2020
- 资助金额:
$ 9.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Rapid structure-based software to enhance antibody affinity and developability for high-throughput screening: Aiming toward total in silico design of antibodies
基于快速结构的软件可增强抗体亲和力和高通量筛选的可开发性:旨在实现抗体的全面计算机设计
- 批准号:
10603473 - 财政年份:2020
- 资助金额:
$ 9.06万 - 项目类别:
IN SILICO DESIGN OF HIGH-AFFINITY RECOMBINANT ANTIBODIES
高亲和力重组抗体的计算机模拟设计
- 批准号:
2342674 - 财政年份:2020
- 资助金额:
$ 9.06万 - 项目类别:
Studentship
Strategies for generating high affinity antibodies against Gram negative bacteria
产生针对革兰氏阴性菌的高亲和力抗体的策略
- 批准号:
10117194 - 财政年份:2020
- 资助金额:
$ 9.06万 - 项目类别:
Directed Evolution of HIV Broadly Neutralizing Antibodies Using a Novel CRISPR-Engineered B cell in Vitro Affinity Maturation Platform
使用新型 CRISPR 工程 B 细胞在体外亲和力成熟平台定向进化 HIV 广泛中和抗体
- 批准号:
10115604 - 财政年份:2020
- 资助金额:
$ 9.06万 - 项目类别:
Interdisciplinary protein engineering approach to design high affinity antibodies for flaviviruses
跨学科蛋白质工程方法设计黄病毒高亲和力抗体
- 批准号:
10294224 - 财政年份:2018
- 资助金额:
$ 9.06万 - 项目类别: