New Chemical Tools for Exploring Cellular Physiology
探索细胞生理学的新化学工具
基本信息
- 批准号:9753268
- 负责人:
- 金额:$ 22.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-22 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:AreaBiophysicsCardiac MyocytesCell CycleCell membraneCell physiologyCellsChemicalsChemistryDiseaseElectrodesElectron MicroscopyElectron TransportGenerationsGoalsHealthHumanImageIonsLengthLifeMeasurementMembrane PotentialsMicroscopyMolecularMonitorNeuronsNeurosciencesOrganellesOrganic ChemistryPhysiologyResearchResolutionRoleSpecific qualifier valueSynthesis ChemistrySystemTechniquesTimebasedesigninsightmigrationpatch clampprogramsreconstructionsensorsmall moleculetemporal measurementtoolvoltage
项目摘要
Abstract
New Chemical Tools for Visualizing Cellular Physiology
The cell membrane is the only organelle shared by all varieties of cellular life. Unequal distribution of ions
and chemical species across the plasma membrane results in the generation of an electrochemical
potential, and rapid changes in this membrane potential, or voltage, drive the unique physiology of
excitable cells like neurons and cardiomyocytes. However, all cells, even non-excitable cells, possess a
membrane potential, and mounting evidence supports a role for membrane potential in controlling
fundamental cellular physiology—for example, cell cycle, migration, proliferation, and differentiation—in
non-excitable cells. Despite the central role of membrane potential to the cellular physiology of both
excitable and non-excitable cells, our understanding of membrane potential in these systems remains
incomplete, due in large part to a lack of tools for studying cellular physiology with high spatial and
temporal resolution. Measurements of membrane potential rely on highly invasive, low throughput direct
voltage recording through electrodes (patch clamping) or by indirectly monitoring the down-stream effects
of membrane potential via imaging (Ca2+ imaging). We propose to use the power of synthetic organic
chemistry to design fluorescent voltage sensors to probe membrane potential dynamics in neurons and
cardiomyocytes, in addition to non-excitable cells. In a complementary approach, we are developing
small molecule-based activity integrators that integrate Ca2+ transients over time to enable high resolution
reconstruction of cellular activity during a specified time window—at length scales (superresolution
microscopy, electron microscopy) that are not accessible with currently available sensors.
Although many of the tools we are developing have applications in neuroscience, these strategies and
techniques can be applied to fundamental cellular physiology. Additionally, my research program places
a heavy emphasis on synthetic chemistry and molecular design to achieve our goals. I anticipate we will
uncover fundamental insights in areas related to photoinduced electron transfer, supramolecular
chemistry, physical organic chemistry, and biophysics as we design and develop these new tools.
摘要
可视化细胞生理学的新化学工具
细胞膜是所有种类的细胞所共有的唯一细胞器。离子分布不均
而穿过质膜的化学物种导致产生电化学
电位,以及这种膜电位或电压的快速变化,驱动了
像神经元和心肌细胞这样的兴奋性细胞。然而,所有细胞,甚至是不可兴奋的细胞,都有一个
膜电位,越来越多的证据支持膜电位在控制
基本细胞生理学--例如,细胞周期、迁移、增殖和分化
不可兴奋的细胞。尽管膜电位在两者的细胞生理学中起着中心作用
对于可兴奋和不可兴奋的细胞,我们对这些系统中的膜电位的理解仍然
不完整,很大程度上是由于缺乏研究高空间和高密度的细胞生理学的工具
时间分辨率。膜电位的测量依赖于高侵入性、低通量的直接测量
通过电极记录电压(膜片钳)或通过间接监测下游效应
通过成像(钙离子成像)检测膜电位。我们建议利用合成有机物质的力量
化学设计荧光电压传感器来探测神经元的膜电位动态和
除非兴奋性细胞外,还有心肌细胞。在一个互补的方法中,我们正在开发
基于小分子的活性积分器,随着时间的推移整合钙离子瞬变以实现高分辨率
在特定时间窗口内重建细胞活动-在长度尺度(超分辨率
显微镜、电子显微镜),这是目前可用的传感器无法访问的。
尽管我们正在开发的许多工具在神经科学中都有应用,但这些策略和
这些技术可以应用于基础细胞生理学。另外,我的研究项目把
非常重视合成化学和分子设计,以实现我们的目标。我想我们会的
揭示与光致电子转移、超分子相关领域的基本见解
化学、物理有机化学和生物物理学,因为我们设计和开发这些新工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Evan Walker Miller其他文献
Evan Walker Miller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Evan Walker Miller', 18)}}的其他基金
Interrogating Neuronal Membrane Potential Dynamics with Optical Voltage Sensors
用光学电压传感器询问神经元膜电位动态
- 批准号:
10367845 - 财政年份:2017
- 资助金额:
$ 22.09万 - 项目类别:
Interrogating Neuronal Membrane Potential Dynamics with Optical Voltage Sensors
用光学电压传感器询问神经元膜电位动态
- 批准号:
10534178 - 财政年份:2017
- 资助金额:
$ 22.09万 - 项目类别:
Interrogating Neuronal Membrane Potential Dynamics with Optical Voltage Sensors
用光学电压传感器询问神经元膜电位动态
- 批准号:
10084321 - 财政年份:2017
- 资助金额:
$ 22.09万 - 项目类别:
New Chemical Tools for Exploring Cellular Physiology
探索细胞生理学的新化学工具
- 批准号:
9143007 - 财政年份:2016
- 资助金额:
$ 22.09万 - 项目类别:
New Chemical Tools for Exploring Cellular Physiology
探索细胞生理学的新化学工具
- 批准号:
9981758 - 财政年份:2016
- 资助金额:
$ 22.09万 - 项目类别:
Molecular and optogenetic tools for studying voltage in the brain
用于研究大脑电压的分子和光遗传学工具
- 批准号:
8728414 - 财政年份:2013
- 资助金额:
$ 22.09万 - 项目类别:
Molecular and optogenetic tools for studying voltage in the brain
用于研究大脑电压的分子和光遗传学工具
- 批准号:
8735200 - 财政年份:2013
- 资助金额:
$ 22.09万 - 项目类别:
Molecular and optogenetic tools for studying voltage in the brain
用于研究大脑电压的分子和光遗传学工具
- 批准号:
8281248 - 财政年份:2012
- 资助金额:
$ 22.09万 - 项目类别:
Molecular and optogenetic tools for studying voltage in the brain
用于研究大脑电压的分子和光遗传学工具
- 批准号:
8416343 - 财政年份:2012
- 资助金额:
$ 22.09万 - 项目类别:
A Genetically-Targeted Molecular Wire Fluorescent Sensor for Monitoring Voltage
用于监测电压的基因靶向分子线荧光传感器
- 批准号:
8117708 - 财政年份:2010
- 资助金额:
$ 22.09万 - 项目类别:
相似海外基金
FORTIFY - From Molecular Physiology to Biophysics of the Glymphatic System: a Regulatory Role for Aquaporin-4
FORTIFY - 从类淋巴系统的分子生理学到生物物理学:Aquaporin-4 的调节作用
- 批准号:
EP/Y023684/1 - 财政年份:2024
- 资助金额:
$ 22.09万 - 项目类别:
Research Grant
The Biophysics of Mesoscale, Reversible, Biomolecular Assemblies
中尺度可逆生物分子组装的生物物理学
- 批准号:
EP/Y000501/1 - 财政年份:2024
- 资助金额:
$ 22.09万 - 项目类别:
Fellowship
CAREER: Surfactant Proteins that Stabilize Biomolecular Condensates: From Biophysics to Biomaterials for Biomanufacturing
职业:稳定生物分子缩合物的表面活性剂蛋白:从生物物理学到生物制造的生物材料
- 批准号:
2238914 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Continuing Grant
Biophysics of the brain’s waste disposal system: Understanding why we sleep
大脑废物处理系统的生物物理学:了解我们为什么睡觉
- 批准号:
DP230101113 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Discovery Projects
Biophysics of liquid droplets in bacteria
细菌中液滴的生物物理学
- 批准号:
2887560 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Studentship
REU Site: A Summer Research Experience in Structural and Computational Biology and Biophysics
REU 网站:结构与计算生物学和生物物理学的夏季研究经历
- 批准号:
2150396 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Continuing Grant
Targeted Infusion Project: Creation of a Biophysics minor program for STEM success
有针对性的输液项目:为 STEM 成功创建生物物理学辅修课程
- 批准号:
2306506 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Standard Grant
Center: REU Site: Interdisciplinary Research Opportunities in Biophysics
中心:REU 地点:生物物理学的跨学科研究机会
- 批准号:
2242779 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Standard Grant














{{item.name}}会员




