Molecular and optogenetic tools for studying voltage in the brain
用于研究大脑电压的分子和光遗传学工具
基本信息
- 批准号:8735200
- 负责人:
- 金额:$ 24.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-15 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAffinityAntibodiesBehaviorBindingBiological AssayBrainCellsChimeric ProteinsCommunicationComplexDetectionDevelopmentDissectionDyesElectron TransportElectronsFluo-3FluorescenceFluorescence MicroscopyFuture GenerationsHabenulaHippocampus (Brain)ImageIn VitroInvestigationKnowledgeLabelLateralLengthLifeLightMeasurementMeasuresMembraneMembrane PotentialsMentorsMethodsMolecularMonitorNeurobiologyNeuronsPathologyPhasePhysiologyPopulationPositioning AttributePrimary Cell CulturesProcessProteinsRattusReaction TimeRelative (related person)ReportingResearchSamplingSideSliceSolidSolubilitySolutionsSpeedStaining methodStainsSystemTechniquesTestingVariantWorkabstractingattenuationbasechemical synthesischromophoredepressive symptomsdesignengineering designfluorescence imagingfluorophoreimprovedmultidisciplinarynoveloptogeneticspatch clampquantumrelating to nervous systemresponsesensorsmall moleculetooluptakevoltagewater solubility
项目摘要
Project Summary/Abstract
Fluorescence imaging has become the fastest growing technique for monitoring neuronal activity in defined
networks of neurons. We have recently developed a molecular wire-based fluorescent sensor for optically
measuring voltage changes in mammalian neurons. This novel method makes use of a fluorophore connected
to a quencher via a long molecular wire that spans a large fraction of the transmembrane voltage. At resting
potentials, electron transfer from the quencher through the wire to the excited state of the fluorophore
quenches the latter. Depolarization inhibits electron transfer and brightens fluorescence, just as Ca2+ binding
dequenches indicators like fluo-3. These new molecular wire voltage sensitive dyes (VSDs) provide large and
fast increases in fluorescence upon depolarization and can optically detect and resolve evoked and
spontaneuous action potentials in single trials in primary culture neurons. During the mentored phase, the
proposed research seeks to expand upon these initial findings by characterizing molecular wire VSDs in a
more complex context: mammalian brain slices. Previously synthesized genetically targeted versions of the
molecular wire VSDs will enable the interrogation of defined sub-populations of neurons. As a test-case,
specific neuronal populations in the lateral habenula, a region associated with depressive behavior, will be
genetically targeted and examined with molecular wire VSDs . Another method for improving sensitivity via
selective neuronal labeling is through the use of genetically encoded sensors. In the mentored phase, the
intramolecular photoinduced electron transfer (PeT) rates of fluorescent protein fusions will be examined and
the voltage sensitivity of this process quantified to determine the optimal configuration for voltage sensitivity in
vitro. During the independent phase, this knowledge will be exploited to generate genetically encoded voltage
sensitive fluorescent proteins based on a PeT mechanism. As with the small molecule counterparts, a PeT-
based approach to voltage sensing should provide large, fast fluorescent changes with negligible capacitative
load. Membrane localization will be investigated via a number of strategies and the sensitivity of the probes in
live cells measured. Finally, in the independent phase, a rational design and synthesis of improved molecular
wire VSDs will be carried out. Systematic variation of the donor, acceptor, and molecular wire and analysis of
the resulting quantum yields, voltage sensitivities and solubilities of the probes will reveal design principles
enabling future generations of VSDs to provide greater sensitivity and precision in the detection of minute
voltage changes in heterogeneous brain samples. Together, the components of the research strategy provide
a multidisciplinary platform, spanning slice physiology, fluorescent protein design and engineering, and
chemical synthesis, from which to begin to interrogate the circuitry of defined neurons within brain slices. The
ability to make sensitive and precise measurements within sub-populations of neurons within heterogeneous
systems will dramatically increase our understanding of the inner workings of the brain.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Evan Walker Miller其他文献
Evan Walker Miller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Evan Walker Miller', 18)}}的其他基金
Interrogating Neuronal Membrane Potential Dynamics with Optical Voltage Sensors
用光学电压传感器询问神经元膜电位动态
- 批准号:
10367845 - 财政年份:2017
- 资助金额:
$ 24.08万 - 项目类别:
Interrogating Neuronal Membrane Potential Dynamics with Optical Voltage Sensors
用光学电压传感器询问神经元膜电位动态
- 批准号:
10534178 - 财政年份:2017
- 资助金额:
$ 24.08万 - 项目类别:
Interrogating Neuronal Membrane Potential Dynamics with Optical Voltage Sensors
用光学电压传感器询问神经元膜电位动态
- 批准号:
10084321 - 财政年份:2017
- 资助金额:
$ 24.08万 - 项目类别:
New Chemical Tools for Exploring Cellular Physiology
探索细胞生理学的新化学工具
- 批准号:
9143007 - 财政年份:2016
- 资助金额:
$ 24.08万 - 项目类别:
New Chemical Tools for Exploring Cellular Physiology
探索细胞生理学的新化学工具
- 批准号:
9981758 - 财政年份:2016
- 资助金额:
$ 24.08万 - 项目类别:
New Chemical Tools for Exploring Cellular Physiology
探索细胞生理学的新化学工具
- 批准号:
9753268 - 财政年份:2016
- 资助金额:
$ 24.08万 - 项目类别:
Molecular and optogenetic tools for studying voltage in the brain
用于研究大脑电压的分子和光遗传学工具
- 批准号:
8728414 - 财政年份:2013
- 资助金额:
$ 24.08万 - 项目类别:
Molecular and optogenetic tools for studying voltage in the brain
用于研究大脑电压的分子和光遗传学工具
- 批准号:
8281248 - 财政年份:2012
- 资助金额:
$ 24.08万 - 项目类别:
Molecular and optogenetic tools for studying voltage in the brain
用于研究大脑电压的分子和光遗传学工具
- 批准号:
8416343 - 财政年份:2012
- 资助金额:
$ 24.08万 - 项目类别:
A Genetically-Targeted Molecular Wire Fluorescent Sensor for Monitoring Voltage
用于监测电压的基因靶向分子线荧光传感器
- 批准号:
8117708 - 财政年份:2010
- 资助金额:
$ 24.08万 - 项目类别:
相似海外基金
Multidimensional development of high-affinity anti-glycan antibodies to fight deadly bacterial infections
多维开发高亲和力抗聚糖抗体以对抗致命细菌感染
- 批准号:
10549640 - 财政年份:2023
- 资助金额:
$ 24.08万 - 项目类别:
Computational modelling and simulation of antibodies to enhance binding affinity of a potential Burkholderia pseudomallei therapeutic
抗体的计算模型和模拟,以增强潜在的鼻疽伯克霍尔德氏菌治疗剂的结合亲和力
- 批准号:
2750554 - 财政年份:2021
- 资助金额:
$ 24.08万 - 项目类别:
Studentship
Affinity Biosensors for COVID-19 Antibodies
适用于 COVID-19 抗体的亲和生物传感器
- 批准号:
61319 - 财政年份:2020
- 资助金额:
$ 24.08万 - 项目类别:
Feasibility Studies
Directed Evolution of HIV Broadly Neutralizing Antibodies Using a Novel CRISPR-Engineered B cell in Vitro Affinity Maturation Platform
使用新型 CRISPR 工程 B 细胞在体外亲和力成熟平台定向进化 HIV 广泛中和抗体
- 批准号:
10013588 - 财政年份:2020
- 资助金额:
$ 24.08万 - 项目类别:
Affinity maturation and property changes of single-domain antibodies through repeated immunizations.
通过重复免疫,单域抗体的亲和力成熟和性质变化。
- 批准号:
20K07009 - 财政年份:2020
- 资助金额:
$ 24.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Rapid structure-based software to enhance antibody affinity and developability for high-throughput screening: Aiming toward total in silico design of antibodies
基于快速结构的软件可增强抗体亲和力和高通量筛选的可开发性:旨在实现抗体的全面计算机设计
- 批准号:
10603473 - 财政年份:2020
- 资助金额:
$ 24.08万 - 项目类别:
IN SILICO DESIGN OF HIGH-AFFINITY RECOMBINANT ANTIBODIES
高亲和力重组抗体的计算机模拟设计
- 批准号:
2342674 - 财政年份:2020
- 资助金额:
$ 24.08万 - 项目类别:
Studentship
Strategies for generating high affinity antibodies against Gram negative bacteria
产生针对革兰氏阴性菌的高亲和力抗体的策略
- 批准号:
10117194 - 财政年份:2020
- 资助金额:
$ 24.08万 - 项目类别:
Directed Evolution of HIV Broadly Neutralizing Antibodies Using a Novel CRISPR-Engineered B cell in Vitro Affinity Maturation Platform
使用新型 CRISPR 工程 B 细胞在体外亲和力成熟平台定向进化 HIV 广泛中和抗体
- 批准号:
10115604 - 财政年份:2020
- 资助金额:
$ 24.08万 - 项目类别:
Interdisciplinary protein engineering approach to design high affinity antibodies for flaviviruses
跨学科蛋白质工程方法设计黄病毒高亲和力抗体
- 批准号:
10294224 - 财政年份:2018
- 资助金额:
$ 24.08万 - 项目类别:














{{item.name}}会员




