Molecular Physiology of HERG (KCNH2) Pottasium Channels
HERG (KCNH2) 钾通道的分子生理学
基本信息
- 批准号:8443804
- 负责人:
- 金额:$ 35.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2014-11-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAction PotentialsAdverse effectsArrhythmiaCardiacCell Culture TechniquesCellsChargeDiseaseElectrophysiology (science)ElectrostaticsEthersExhibitsFluorescence SpectroscopyGene TransferGenesGoalsHealthHeartHeart DiseasesHumanHydrophobic InteractionsHydrophobic SurfacesInheritedKineticsLifeLong QT SyndromeMeasuresMediatingMolecularMuscle CellsMutationN-terminalPharmacologic SubstancePhasePhysiologyPlayPotassium ChannelRoleShapesSiteSudden DeathSurfaceSyncopeSystemTestingTimeTranslatingVariantVentricularWorkbaseheart rhythminterdisciplinary approachpatch clamppreventreceptorresearch studysensorvoltagevoltage clamp
项目摘要
DESCRIPTION (provided by applicant): Human ether a go-go-related gene 1a (HERG1a, Kv11.1) K+ channels play a critical role in maintaining the fundamental cardiac rhythm. The significance of HERG1a channels is that they are the central component of the rapid delayed-rectifier K+ channel (IKr) in heart. HERG and IKr are specialized to conduct an outward K+ current that drives repolarization of the late phase of the cardiac action potential. The critical role of HERG1a in health and disease is emphasized by inherited mutations in the gene encoding HERG channels. Mutations in HERG are associated with the long QT syndrome (LQTS) a cardiac disorder that causes arrhythmia, syncope and sudden death. HERG channels are of additional significance as a side-effect of an increasing number of pharmaceuticals is to produce an acquired form of LQTS (aLQTS) by inhibiting the function of HERG channels. The opening and closing (gating) of HERG and IKr channels are critical for normal cardiac electrophysiology and the normal heartbeat. In particular, the closing rate of native IKr channels is vital for the perfect timing of the outward IKr current during repolarization. Some advances, including our previous work, have delineated key molecular components of the channel closing (deactivation) mechanism, including two critical domains within the HERG1a N-terminal region. These are the `PAS' domain and a short region upstream here termed the PAS-CAP. Diversity in the mechanism of deactivation comes from a HERG1a variant, HERG1b that lacks the key PAS and PAS-CAP domains and consequently closes much faster than HERG1a. The presence of HERG1b in heart may explain the faster kinetics of deactivation measured for IKr. Despite these advances, a mechanism for channel deactivation has remained elusive. The goals of the proposed experiments are to determine a comprehensive molecular mechanism for closing in HERG and IKr. The Specific Aims are to 1) test the hypothesis that the PAS-CAP region determines deactivation gating via an electrostatic interaction with the channel 2) to test the hypothesis that the hydrophobic surface of the PAS domain interacts with a hydrophobic `PAS receptor site' in the channel to mediate deactivation and 3) to test the hypothesis that the HERG1b subunit is a key functional component of native IKr and that ERG1b accounts for the faster kinetics described for native IKr. To carry out the specific aims we will use a multidisciplinary approach that includes patch-clamp and voltage-clamp electrophysiology in heterologous expression systems and native cells, fluorescence spectroscopy, gene transfer to myocytes and native cell culture techniques. Our long-term objectives are to determine the fundamental molecular basis of gating and modulation in cardiac IKr channels, in an effort to better treat inherited LQTS and prevent acquired LQTS.
描述(由申请人提供):人ether a go-go相关基因1a(HERG 1a,Kv11.1)K+通道在维持基本心律方面发挥关键作用。HERG 1a通道的重要性在于它是心脏快速延迟整流钾通道(IKr)的中心成分。HERG和IKr专门传导外向K+电流,驱动心脏动作电位晚期的复极化。HERG 1a在健康和疾病中的关键作用通过编码HERG通道的基因中的遗传突变来强调。HERG的突变与长QT综合征(LQTS)有关,这是一种导致心律失常、晕厥和猝死的心脏疾病。HERG通道具有额外的重要性,因为越来越多的药物的副作用是通过抑制HERG通道的功能产生获得性形式的LQTS(aLQTS)。HERG和IKr通道的打开和关闭(门控)对于正常心脏电生理和正常心跳至关重要。特别是,天然IKr通道的关闭速率对于复极化期间外向IKr电流的完美定时至关重要。一些进展,包括我们以前的工作,已经描绘了通道关闭(失活)机制的关键分子组成部分,包括HERG 1a N-末端区域内的两个关键结构域。这些是“PAS”结构域和一个短的上游区域,这里称为PAS-CAP。失活机制的多样性来自HERG 1a变体HERG 1b,它缺乏关键的PAS和PAS-CAP结构域,因此比HERG 1a关闭得更快。心脏中HERG 1b的存在可以解释IKr的失活动力学更快。尽管有这些进展,但通道失活的机制仍然难以捉摸。拟议实验的目标是确定HERG和IKr关闭的综合分子机制。具体目的是:1)检验PAS-CAP区通过与通道的静电相互作用决定失活门控的假设; 2)检验PAS结构域的疏水表面与通道中的疏水性“PAS受体位点”相互作用介导失活的假设; 3)为了检验HERG 1b亚基是天然IKr的关键功能组分以及ERG 1b解释了天然IKr所描述的更快动力学的假设。为了实现具体目标,我们将使用多学科的方法,包括膜片钳和电压钳电生理学在异源表达系统和天然细胞,荧光光谱,基因转移到肌细胞和天然细胞培养技术。我们的长期目标是确定心脏IKr通道门控和调节的基本分子基础,以更好地治疗遗传性LQTS和预防获得性LQTS。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MATTHEW C TRUDEAU其他文献
MATTHEW C TRUDEAU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MATTHEW C TRUDEAU', 18)}}的其他基金
Regulatory and Functional Mechanisms in hERG Ion Channels
hERG 离子通道的调节和功能机制
- 批准号:
10116420 - 财政年份:2019
- 资助金额:
$ 35.7万 - 项目类别:
Regulatory and Functional Mechanisms in hERG Ion Channels
hERG 离子通道的调节和功能机制
- 批准号:
10358518 - 财政年份:2019
- 资助金额:
$ 35.7万 - 项目类别:
Conformational Dynamics of hERG Potassium Channels
hERG 钾通道的构象动力学
- 批准号:
10083113 - 财政年份:2019
- 资助金额:
$ 35.7万 - 项目类别:
Regulatory and Functional Mechanisms in hERG Ion Channels
hERG 离子通道的调节和功能机制
- 批准号:
9903398 - 财政年份:2019
- 资助金额:
$ 35.7万 - 项目类别:
Conformational Dynamics of hERG Potassium Channels
hERG 钾通道的构象动力学
- 批准号:
10324588 - 财政年份:2019
- 资助金额:
$ 35.7万 - 项目类别:
Molecular Physiology of HERG (KCNH2) Pottasium Channels
HERG (KCNH2) 钾通道的分子生理学
- 批准号:
8576466 - 财政年份:2009
- 资助金额:
$ 35.7万 - 项目类别:
Molecular Physiology of HERG (KCNH2) Pottasium Channels
HERG (KCNH2) 钾通道的分子生理学
- 批准号:
7372255 - 财政年份:2009
- 资助金额:
$ 35.7万 - 项目类别:
Molecular Physiology of HERG (KCNH2) Pottasium Channels
HERG (KCNH2) 钾通道的分子生理学
- 批准号:
7878599 - 财政年份:2009
- 资助金额:
$ 35.7万 - 项目类别:
Molecular Physiology of HERG (KCNH2) Pottasium Channels
HERG (KCNH2) 钾通道的分子生理学
- 批准号:
8150607 - 财政年份:2009
- 资助金额:
$ 35.7万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 35.7万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 35.7万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 35.7万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 35.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 35.7万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 35.7万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 35.7万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 35.7万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 35.7万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 35.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)