Regulatory and Functional Mechanisms in hERG Ion Channels
hERG 离子通道的调节和功能机制
基本信息
- 批准号:10116420
- 负责人:
- 金额:$ 28.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAmino AcidsAreaArrhythmiaBiochemicalBiological AssayBiologyBiotinylationC-terminalCardiacCardiac MyocytesCell membraneCellsClinicalCysteineDataDiseaseDrug PrescriptionsElectrophysiology (science)EngineeringEnhancersEnvironmentEthersFluorescenceFluorescence MicroscopyFluorescence Resonance Energy TransferFluorometryGenesGoalsHeartHeart DiseasesHumanInheritedIon ChannelLeadLocationLong QT SyndromeMeasuresMembraneMetal Binding SiteMethodsMolecularMolecular ConformationMotionMovementMuscle CellsMutationN-terminalOutcomePharmaceutical PreparationsPhysiologicalPlayPotassiumPotassium ChannelPredispositionPropertyProtein BiochemistryProtein IsoformsProtein SubunitsProteinsRegulationRoleScienceSpectrum AnalysisStructureSudden DeathSurfaceTechnologyTestingTransition ElementsVentricularWorkbasecrosslinkdesigndisease-causing mutationexperimental studyinduced pluripotent stem cellinsightinterestloss of function mutationmutantnovelnovel strategiesnovel therapeutic interventionpatch clamppolypeptideprotein protein interactionresponsesensorstem cellssudden cardiac deathtraffickingvoltagevoltage clampyeast two hybrid system
项目摘要
Human ether á go-go related gene (hERG) potassium channels are of extraordinary clinical importance.
hERG channels play a prominent role in the heart by generating a current that repolarizes cardiac action
potentials. Mutations in the hERG gene and inhibition of hERG channels by the off-target action of prescription
drugs cause a reduction in hERG current that accounts for both inherited and acquired forms of long QT
syndrome (LQTS), a predisposition to cardiac arrhythmias. The disease relevance of hERG emphasizes the
importance of these channels in normal physiological function. hERG channels have highly specialized gating
properties (opening and closing) that optimize them for their cellular roles in the heart and specialized subunit
assembly properties that also control channel gating. hERG (also known as the primary isoform, hERG1a)
associates with another `alpha' subunit isoform, hERG1b. The mechanisms of subunit association are a major
area of interest for understanding how heteromeric hERG1a/hERG1b channels are regulated and gated. The
goal of the proposed experiments is to understand the molecular mechanisms that underlie these
specializations and how they control homomeric hERG1a and heteromeric hERG1a/hERG1b channels. We will
examine hERG1a and hERG1b subunit protein-protein interactions using novel fluorescence methods and
protein biochemistry assays. We will test recent structures of static N- and C-terminal domain interactions
within hERG1a and test how these domain interactions control assembly and dynamically rearrange during
channel gating. Our approach is cutting-edge as we will use electrophysiological recordings to investigate
channel conformational changes and fluorescence microscopy to study how structural interactions control
channel gating and regulation. We will take advantage of non-canonical amino acid biology to engineer small
probes to hERG1a and introduce metal binding sites at locations guided by recent structures and test for
movements with transition metal FRET and voltage. We will also use a functional toolbox of approaches to
examine the structural and functional interactions of hERG1a and hERG1b subunits and the cellular role of
disease-causing mutations in human induced pluripotent stem cell-derived cardiomyocytes, which have a
robust cardiac IKr current formed by hERG1a and hERG1b channel subunits.
Completion of these studies will lead to a greater understanding of the basic mechanisms for
homomeric hERG1a and heteromeric hERGa1a/hERG1b channel gating, insight into how intracellular domains
of the channels regulate the assembly of hERG1a and hERG1b subunits and how mutations perturb these
interactions. Based on our deep understanding of mechanism, we have developed and will test hERG1a
polypeptides that encode hERG1a functional domains for rescue of hERG1a and hERG1b LQTS mutant
channels. Our outcomes are anticipated to lead to rational biomedical strategies to counteract or enhance the
loss-of-function mutations in hERG1a and hERG1b subunits that cause arrhythmias.
人类乙醚-围棋相关基因(HERG)钾通道具有非常重要的临床意义。
HERG通道通过产生使心脏活动重新极化的电流,在心脏中扮演着重要的角色
潜力。HERG基因突变与方剂非靶向作用对HERG通道的抑制作用
药物导致遗传性和获得性长QT的Herg电流减少
综合征(LQTS),一种易发生心律失常的症状。HERG的疾病相关性强调了
这些通道在正常生理功能中的重要性。HERG通道具有高度专业化的门控
属性(打开和关闭),优化它们在心脏和专化亚单位中的细胞角色
也控制通道选通的程序集属性。Herg(也称为初级异构体,hERG1a)
与另一种‘α’亚基异构体hERG1b相关联。亚基联合的机制是一种主要的
感兴趣的领域,了解异构体hERG1a/hERG1b通道是如何调节和门控的。这个
拟议中的实验的目标是了解这些现象背后的分子机制。
专门化及其如何控制同聚体hERG1a和异构体hERG1a/hERG1b通道。我们会
用新的荧光方法和方法检测hERG1a和hERG1b亚单位蛋白质-蛋白质相互作用
蛋白质生化分析。我们将测试静态N-末端和C-末端结构域相互作用的最新结构
在hERG1a中,并测试这些域交互如何控制组装和在
频道选通。我们的方法是尖端的,因为我们将使用电生理记录来研究
通道构象变化和荧光显微镜研究结构相互作用如何控制
通道选通和调节。我们将利用非规范的氨基酸生物学来设计小的
HERG1a的探针和在最近结构引导的位置上引入金属结合位点的探针和测试
带有过渡金属振荡器和电压的机芯。我们还将使用一个功能强大的工具箱来
研究hERG1a和hERG1b亚基的结构和功能相互作用以及HERG1a和hERG1b的细胞作用
人类诱导的多能干细胞来源的心肌细胞中的致病突变,具有
由hERG1a和hERG1b通道亚基形成的强健的心脏IKR电流。
这些研究的完成将使我们更好地了解
同源hERG1a和异构体hERGa1a/hERG1b通道门控,深入了解细胞内结构域
调节hERG1a和hERG1b亚单位的组装以及突变如何扰乱这些
互动。基于我们对机制的深刻理解,我们已经开发并将测试hERG1a
编码hERG1a功能区的多肽用于挽救hERG1a和hERG1b LQTS突变体
频道。我们的结果有望导致合理的生物医学策略,以抵消或增强
导致心律失常的hERG1a和hERG1b亚基功能丧失突变。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MATTHEW C TRUDEAU其他文献
MATTHEW C TRUDEAU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MATTHEW C TRUDEAU', 18)}}的其他基金
Regulatory and Functional Mechanisms in hERG Ion Channels
hERG 离子通道的调节和功能机制
- 批准号:
10358518 - 财政年份:2019
- 资助金额:
$ 28.51万 - 项目类别:
Conformational Dynamics of hERG Potassium Channels
hERG 钾通道的构象动力学
- 批准号:
10083113 - 财政年份:2019
- 资助金额:
$ 28.51万 - 项目类别:
Regulatory and Functional Mechanisms in hERG Ion Channels
hERG 离子通道的调节和功能机制
- 批准号:
9903398 - 财政年份:2019
- 资助金额:
$ 28.51万 - 项目类别:
Conformational Dynamics of hERG Potassium Channels
hERG 钾通道的构象动力学
- 批准号:
10324588 - 财政年份:2019
- 资助金额:
$ 28.51万 - 项目类别:
Molecular Physiology of HERG (KCNH2) Pottasium Channels
HERG (KCNH2) 钾通道的分子生理学
- 批准号:
8443804 - 财政年份:2009
- 资助金额:
$ 28.51万 - 项目类别:
Molecular Physiology of HERG (KCNH2) Pottasium Channels
HERG (KCNH2) 钾通道的分子生理学
- 批准号:
8576466 - 财政年份:2009
- 资助金额:
$ 28.51万 - 项目类别:
Molecular Physiology of HERG (KCNH2) Pottasium Channels
HERG (KCNH2) 钾通道的分子生理学
- 批准号:
7372255 - 财政年份:2009
- 资助金额:
$ 28.51万 - 项目类别:
Molecular Physiology of HERG (KCNH2) Pottasium Channels
HERG (KCNH2) 钾通道的分子生理学
- 批准号:
7878599 - 财政年份:2009
- 资助金额:
$ 28.51万 - 项目类别:
Molecular Physiology of HERG (KCNH2) Pottasium Channels
HERG (KCNH2) 钾通道的分子生理学
- 批准号:
8150607 - 财政年份:2009
- 资助金额:
$ 28.51万 - 项目类别:
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 28.51万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 28.51万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 28.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 28.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 28.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
- 批准号:
2888395 - 财政年份:2023
- 资助金额:
$ 28.51万 - 项目类别:
Studentship
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 28.51万 - 项目类别:
Continuing Grant
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 28.51万 - 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 28.51万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 28.51万 - 项目类别:














{{item.name}}会员




