Impact of neighborhood and workforce deprivation on diabetes outcomes in Veterans: a spatio-temporal analysis
社区和劳动力匮乏对退伍军人糖尿病结局的影响:时空分析
基本信息
- 批准号:9503218
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAlgorithmsAmbulatory CareAmputationAreaAttentionBlood PressureCaringCause of DeathCharacteristicsCommunicationCommunitiesCommunity HealthcareData Base ManagementData SetDatabasesDiabetes MellitusDimensionsDiseaseDisease OutcomeEducationEngineeringEthnic OriginGeographic Information SystemsGeographic LocationsGeographyGoalsHealthHealth Care CostsHealth ExpendituresHealth PersonnelHealth Services AccessibilityHealthcareHealthcare SystemsHeart DiseasesHigh PrevalenceImprove AccessIncomeIndividualInformation TechnologyInterventionKidney FailureKnowledgeLeadLinkLipidsMeasuresMetabolic ControlMethodologyMethodsModelingNeighborhoodsNon-Insulin-Dependent Diabetes MellitusNot Hispanic or LatinoOutcomePatient CarePatientsPatternPersonal SatisfactionPhysiciansPoliciesPolicy MakerPopulationPrevalenceProductivityProviderRaceResearchResourcesSelf EfficacyStatistical MethodsStrokeSystemTime trendTrustUnited StatesVariantVeteransburden of illnesscohortcostdeprivationdisorder riskflexibilityhealth care availabilityhealth care modelhealth disparityhealth literacyhigh riskimprovedimproved outcomeindexinginformation system analysisinnovationinpatient servicemortalitynovelpharmacy benefitpopulation healthracial disparityracial minorityspatial temporal variationspatiotemporalstatisticstherapy developmenttrend
项目摘要
Anticipated Impacts on Veterans Health Care: This project will put forth a comprehensive geospatial
framework to address the VA Blueprint for Excellence Strategy 3: Leverage information technologies,
analytics, and models of healthcare to optimize individual well-being and population health outcomes.
By creating a spatially referenced dataset incorporating health information, workforce productivity,
neighborhood deprivation, we will develop a comprehensive database to examine multiple dimensions of
diabetes care. Through the use of advanced GIS and spatiotemporal statistics, we will identify hotspots of high
disease risk, poor neighborhood resources, and low VA workforce capacity. This information will improve
access to care by helping VA policy makers better match resources to areas with poor outcomes. Finally, by
pinpointing areas with excessive health expenditures, the VA can develop cost-reduction measures to improve
Veterans’ health while containing costs.
Background: Diabetes is the seventh leading cause of death in the United States, can lead to serious
complications, and is associated with increased healthcare costs. Prevalence estimates for Veterans show a
disproportionate burden of disease, with estimates close to 25%, as compared to 8% of the general US
population. Evidence consistently shows racial minorities have a higher prevalence of diabetes, worse
outcomes, higher risk of complications, and higher mortality rate compared to non-Hispanic whites. This
disparity persists after controlling for patient-level factors such as education, income, knowledge, health
literacy, and self-efficacy; provider-level factors, such as bias, communication, and trust; and system-level
factors, such as access to care. Little attention has been given to differences that may be explained by regional
variation in patient-level resources, community-level resources, and health workforce resources.
Objectives: This study seeks to identify and explain spatial and temporal variation in health outcomes,
community resources, VA workforce capacity, and health disparities among patients with type 2 diabetes. Aim
1 will examine spatiotemporal trends in diabetes outcomes, including metabolic control, cost, and mortality.
Aim 2 will develop a new spatiotemporal neighborhood deprivation index and examine its association with
diabetes outcomes and racial disparities. Aim 3 will develop and validate a novel geographic workforce
deprivation index to examine its association with diabetes outcomes and racial disparities.
Methods: We will construct a cohort of veterans with type 2 diabetes receiving either inpatient or outpatient
care at the VA during the years 2000 through 2015 by linking multiple patient and administrative files from the
VHA National Patient Care and Pharmacy Benefits Management databases, using a previously validated VA
algorithm. Using advanced GIS and spatial statistical methods, we will examine spatiotemporal trends in
diabetes outcomes among Veterans with type 2 diabetes. In Aim 1, we will develop a flexible Bayesian
spatiotemporal model to identify hotspots of high prevalence of diabetes-related outcomes. In Aims 2 and 3,
we will use spatiotemporal latent factor models to develop novel neighborhood and workforce deprivation
indices, allowing us to investigate evolving patterns in community resource availability and VA workforce
capacity. Completion of these aims will enable the VA to identify individual, community, and institutional factors
associated with poor diabetes outcomes and to target community and system-level efforts to improve health in
low-resource areas.
对退伍军人医疗保健的预期影响:该项目将提出一个全面的地理空间
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KELLY J HUNT其他文献
KELLY J HUNT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KELLY J HUNT', 18)}}的其他基金
Examining linkages between disrupted care and chronic disease outcomes during the COVID-19 pandemic: a VAMC level spatio-temporal analysis
检查 COVID-19 大流行期间中断的护理与慢性病结果之间的联系:VAMC 级别时空分析
- 批准号:
10641136 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Impact of the COVID-19 pandemic, SARS-CoV-2 infection and social determinants of health on pregnancy complications, birth outcomes and post-pregnancy maternal cardiovascular and mortality outcomes
COVID-19 大流行、SARS-CoV-2 感染和健康社会决定因素对妊娠并发症、出生结局以及孕后孕产妇心血管和死亡率结局的影响
- 批准号:
10598574 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Impact of the COVID-19 pandemic, SARS-CoV-2 infection and social determinants of health on pregnancy complications, birth outcomes and post-pregnancy maternal cardiovascular and mortality outcomes Div
COVID-19 大流行、SARS-CoV-2 感染和健康社会决定因素对妊娠并发症、出生结局以及孕后孕产妇心血管和死亡率结果的影响 Div
- 批准号:
10732644 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Impact of the COVID-19 pandemic, SARS-CoV-2 infection and social determinants of health on pregnancy complications, birth outcomes and post-pregnancy maternal cardiovascular and mortality outcomes
COVID-19 大流行、SARS-CoV-2 感染和健康社会决定因素对妊娠并发症、出生结局以及孕后孕产妇心血管和死亡率结局的影响
- 批准号:
10467634 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Impact of neighborhood and workforce deprivation on diabetes outcomes in Veterans: a spatio-temporal analysis
社区和劳动力匮乏对退伍军人糖尿病结局的影响:时空分析
- 批准号:
10186523 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Impact of neighborhood and workforce deprivation on diabetes outcomes in Veterans: a spatio-temporal analysis
社区和劳动力匮乏对退伍军人糖尿病结局的影响:时空分析
- 批准号:
9904151 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Exposome Contributors to Child Health Originating from National Fetal Growth Study (ECCHO-NFGS)
源自国家胎儿生长研究 (ECCHO-NFGS) 的暴露组对儿童健康的贡献
- 批准号:
9355740 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Longitudinal Assessment of LDL Immune Complexes and Type 1 Diabetes Complications
LDL 免疫复合物和 1 型糖尿病并发症的纵向评估
- 批准号:
8092481 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Longitudinal Assessment of LDL Immune Complexes and Type 1 Diabetes Complications
LDL 免疫复合物和 1 型糖尿病并发症的纵向评估
- 批准号:
7949257 - 财政年份:2010
- 资助金额:
-- - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
- 批准号:
2230829 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)