3D Printed Nano-Bionic Organs
3D打印纳米仿生器官
基本信息
- 批准号:9459522
- 负责人:
- 金额:$ 46.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAcousticsAddressAnatomyAreaAuditoryBiologicalBiologyBionicsCartilageCellsCochleaDevelopmentDimensionsEarElectrodesElectronicsExhibitsEyeGenerationsGeometryHumanHydrogelsImpairmentIn VitroInvestigationLeftMethodsMusicNoseOrganPolymersPrintingProcessProsthesisRegenerative MedicineSilverSystemTissue EngineeringTissuesUltrasonicsUser-Computer InterfaceWorkbiological systemsnanonanomaterialsnanoparticlenovelnovel strategiespreventpublic health relevanceradio frequencytwo-dimensional
项目摘要
DESCRIPTION (provided by applicant): The development of approaches for multidimensional integration of functional electronic components with biological tissue and organs could have tremendous impact in regenerative medicine, smart prosthetics, and human-machine interfaces. However, current electronic devices and systems are inherently two dimensional and rigid, thus prohibiting seamless meshing with three-dimensional, soft biology. The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs for restoring impairments, or enhancing human functionalities over their natural limitations. Current electronics are inherently two-dimensional, preventing seamless integration with biology, as the processes and materials used to create synthetic tissue constructs vs. conventional electronic devices are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with various classes of functional electronic nanomaterials. Recently, we have generated a functional bionic ear via 3D printing of a cell-seeded hydrogel matrix in the precise anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for the in vitro culturing of cartilage tissue around an inductive coil antenna in the ear,
which subsequently connects to cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo music. Here, we propose extending this approach to new functionalities - such as ultrasonic acoustic reception and vasculature - and bionic organs, including bionic eyes and a bionic nose. Overall, our approach presents a disruptive and paradigm-shifting new method to intricately merge biology and electronics via 3D printing. The work outlined here thus constitutes a novel, highly interdisciplinary investigation to addressing outstanding questions in the generation of bionic organs, and we anticipate that this work will represent a paradigm-shift in both tissue engineering, as well as 3D interweaving of functional electronics into biological systems.
描述(由申请人提供):功能电子元件与生物组织和器官多维集成的方法的开发可能会对再生医学、智能假肢和人机界面产生巨大影响。然而,当前的电子设备和系统本质上是二维的和刚性的,因此无法与三维的软生物学无缝啮合。将生物组织与功能电子器件进行三维交织的能力可以创建仿生器官来恢复损伤,或增强人类功能以超越其自然限制。当前的电子产品本质上是二维的,无法与生物学无缝集成,因为用于创建合成组织结构的工艺和材料与传统电子设备非常不同。在这里,我们提出了一种新策略,通过使用各类功能电子纳米材料增材制造生物细胞来克服这些困难。最近,我们通过 3D 打印在人耳精确的解剖几何结构中植入细胞的水凝胶基质,以及由注入的银纳米粒子组成的交织导电聚合物,生成了功能性仿生耳。这使得可以在耳朵中的感应线圈天线周围进行软骨组织的体外培养,
随后连接到耳蜗形电极。印刷耳朵表现出增强的射频接收听觉感应,互补的左耳和右耳可以聆听立体声音乐。在这里,我们建议将这种方法扩展到新的功能——例如超声波接收和脉管系统——以及仿生器官,包括仿生眼睛和仿生鼻子。总的来说,我们的方法提出了一种颠覆性的、范式转变的新方法,通过 3D 打印将生物学和电子学错综复杂地融合在一起。因此,这里概述的工作构成了一项新颖的、高度跨学科的研究,旨在解决仿生器官生成中的突出问题,我们预计这项工作将代表组织工程以及功能电子器件 3D 交织到生物系统中的范式转变。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(4)
3D-printed flexible organic light-emitting diode displays.
- DOI:10.1126/sciadv.abl8798
- 发表时间:2022-01-07
- 期刊:
- 影响因子:13.6
- 作者:Su R;Park SH;Ouyang X;Ahn SI;McAlpine MC
- 通讯作者:McAlpine MC
3D Printed Programmable Release Capsules.
- DOI:10.1021/acs.nanolett.5b01688
- 发表时间:2015-08-12
- 期刊:
- 影响因子:10.8
- 作者:Gupta MK;Meng F;Johnson BN;Kong YL;Tian L;Yeh YW;Masters N;Singamaneni S;McAlpine MC
- 通讯作者:McAlpine MC
3D Printed Bionic Nanodevices.
3D打印的仿生纳米电视。
- DOI:10.1016/j.nantod.2016.04.007
- 发表时间:2016-06
- 期刊:
- 影响因子:17.4
- 作者:Kong YL;Gupta MK;Johnson BN;McAlpine MC
- 通讯作者:McAlpine MC
3D Printed Organ Models for Surgical Applications.
- DOI:10.1146/annurev-anchem-061417-125935
- 发表时间:2018-06-12
- 期刊:
- 影响因子:0
- 作者:Qiu K;Haghiashtiani G;McAlpine MC
- 通讯作者:McAlpine MC
Corrigendum to "3D printed bionic nanodevices" [Nano Today 11 (2016) 330-350].
“3D 打印仿生纳米器件”勘误表 [Nano Today 11 (2016) 330-350]。
- DOI:10.1016/j.nantod.2019.03.009
- 发表时间:2019
- 期刊:
- 影响因子:17.4
- 作者:Kong,YongLin;Gupta,ManeeshK;Johnson,BlakeN;McAlpine,MichaelC
- 通讯作者:McAlpine,MichaelC
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael McAlpine其他文献
Michael McAlpine的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael McAlpine', 18)}}的其他基金
Extracellular matrix regulation of differentiation via modulation of ILK: application to 3D bioprinting of cardiac tissue
通过调节 ILK 进行细胞外基质分化调节:在心脏组织 3D 生物打印中的应用
- 批准号:
10001078 - 财政年份:2017
- 资助金额:
$ 46.2万 - 项目类别:
Extracellular matrix regulation of differentiation via modulation of ILK: application to 3D bioprinting of cardiac tissue
通过调节 ILK 进行细胞外基质分化调节:在心脏组织 3D 生物打印中的应用
- 批准号:
9301966 - 财政年份:2017
- 资助金额:
$ 46.2万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 46.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 46.2万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 46.2万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 46.2万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 46.2万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 46.2万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 46.2万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 46.2万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 46.2万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 46.2万 - 项目类别:
Standard Grant














{{item.name}}会员




