Quantitative Spectroscopic Imaging of Cancer Metabolites in Live Cells and Intact

活细胞和完整细胞中癌症代谢物的定量光谱成像

基本信息

  • 批准号:
    8622774
  • 负责人:
  • 金额:
    $ 19.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-20 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): While altered cell metabolism is an emerging hallmark of cancer, there is a crucial need of new tools for quantitation of metabolites. Though NMR spectroscopy, mass spectrometry, and Raman spectroscopy are widely used for molecular detection in tissue extracts or intact tissues, these tools do not tell the spatial locations of the analytes inside the cell. We address this unmet need via development of multiplex stimulated Raman scattering (SRS) microscopy to enable quantitative vibrational imaging of metabolites in live tumor cells and intact biopsies. The recently developed SRS microscopy allows high-speed, high-sensitivity imaging of single Raman bands in live cells. However, the single-frequency SRS imaging technique has limited capability because it cannot resolve molecular species that often have overlapped Raman bands. We propose to overcome this technical barrier via parallel detection of spectrally dispersed SRS signals enabled by a homebuilt tuned amplifier array. In a pilot study, we demonstrated multiplex SRS imaging of live pancreatic cancer cells with a pixel dwell time of 40 ¿s. In Aim 1, we will develop multiplex stimulated Raman loss (SRL) microscopy and multivariate analysis algorithm to enable quantitative vibrational imaging of lipid metabolites in live cells. In Aim 2, we will develop epi-detected multiplex SRL microscopy to enable high-speed, large-area spectroscopic imaging of tumor biopsies. By accomplishment of the two aims, we will generate a high- sensitivity, high-speed, spectral imaging platform for molecular analysis of live cells with sub-micron spatial resolution. This platform will permit label-free visualization of metabolic conversion in live cancr cells, which is not possible with proteomics tools. Such capability is critical for mechanistic understanding of cancer metabolism and precise evaluation of drugs targeting cancer metabolism. This platform will also permit large- area mapping of intact tumor biopsies and offer information about metabolic biomarkers (e.g. cholesteryl ester) that are indicative of cancer aggressiveness.
描述(由申请人提供):虽然改变的细胞代谢是癌症的一个新的标志,但迫切需要新的代谢物定量工具。虽然NMR光谱、质谱和拉曼光谱被广泛用于组织提取物或完整组织中的分子检测,但这些工具不能告诉细胞内分析物的空间位置。我们通过开发多重受激拉曼散射(SRS)显微镜来解决这一未满足的需求,以实现活肿瘤细胞和完整活检组织中代谢物的定量振动成像。最近开发的SRS显微镜允许在活细胞中的单个拉曼带的高速、高灵敏度成像。然而,单频SRS成像技术具有有限的能力,因为它不能分辨经常具有重叠的拉曼带的分子种类。我们建议通过一个自制的调谐放大器阵列,使光谱分散的SRS信号的并行检测,以克服这一技术障碍。在一项初步研究中,我们展示了活胰腺癌细胞的多重SRS成像,像素停留时间为40秒。在目标1中,我们将开发多重受激拉曼损耗(SRL)显微镜和多变量分析算法,使活细胞中的脂质代谢物的定量振动成像。在目标2中,我们将开发表观检测多重SRL显微镜,以实现肿瘤活检的高速、大面积光谱成像。通过这两个目标的实现,我们将建立一个高灵敏度、高速度、亚微米空间分辨率的活细胞分子分析光谱成像平台。该平台将允许在活细胞中无标记地可视化代谢转化,这是蛋白质组学工具不可能实现的。这种能力对于癌症代谢的机制理解和靶向癌症代谢的药物的精确评估至关重要。该平台还将允许完整肿瘤活检的大面积绘图,并提供关于指示癌症侵袭性的代谢生物标志物(例如胆固醇酯)的信息。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(4)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ji-Xin Cheng其他文献

Ji-Xin Cheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ji-Xin Cheng', 18)}}的其他基金

2023 Chemical Imaging Gordon Research Conferences
2023 年化学成像戈登研究会议
  • 批准号:
    10605394
  • 财政年份:
    2023
  • 资助金额:
    $ 19.21万
  • 项目类别:
Sub-millimeter precision wireless neuromodulation using a microwave split ring resonator
使用微波开口环谐振器的亚毫米精度无线神经调节
  • 批准号:
    10669784
  • 财政年份:
    2022
  • 资助金额:
    $ 19.21万
  • 项目类别:
High-content High-speed Chemical Imaging of Metabolic Reprogramming by Integration of Advanced Instrumentation and Data Science
通过先进仪器和数据科学的集成进行代谢重编程的高内涵高速化学成像
  • 批准号:
    10543185
  • 财政年份:
    2022
  • 资助金额:
    $ 19.21万
  • 项目类别:
High-content High-speed Chemical Imaging of Metabolic Reprogramming by Integration of Advanced Instrumentation and Data Science
通过先进仪器和数据科学的集成进行代谢重编程的高内涵高速化学成像
  • 批准号:
    10344774
  • 财政年份:
    2022
  • 资助金额:
    $ 19.21万
  • 项目类别:
Sub-millimeter precision wireless neuromodulation using a microwave split ring resonator
使用微波开口环谐振器的亚毫米精度无线神经调节
  • 批准号:
    10516429
  • 财政年份:
    2022
  • 资助金额:
    $ 19.21万
  • 项目类别:
Mapping Cancer Metabolism by Mid-infrared Photothermal Microscopy
通过中红外光热显微镜绘制癌症代谢图
  • 批准号:
    10491322
  • 财政年份:
    2021
  • 资助金额:
    $ 19.21万
  • 项目类别:
Mapping Cancer Metabolism by Mid-infrared Photothermal Microscopy
通过中红外光热显微镜绘制癌症代谢图
  • 批准号:
    10271761
  • 财政年份:
    2021
  • 资助金额:
    $ 19.21万
  • 项目类别:
Mapping Cancer Metabolism by Mid-infrared Photothermal Microscopy
通过中红外光热显微镜绘制癌症代谢图
  • 批准号:
    10675665
  • 财政年份:
    2021
  • 资助金额:
    $ 19.21万
  • 项目类别:
Vibrational Spectroscopic Imaging to Unveil Hidden Signatures in Living Systems
振动光谱成像揭示生命系统中隐藏的特征
  • 批准号:
    10206200
  • 财政年份:
    2020
  • 资助金额:
    $ 19.21万
  • 项目类别:
Vibrational Spectroscopic Imaging to Unveil Hidden Signatures in Living Systems
振动光谱成像揭示生命系统中隐藏的特征
  • 批准号:
    10660979
  • 财政年份:
    2020
  • 资助金额:
    $ 19.21万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 19.21万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 19.21万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 19.21万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 19.21万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 19.21万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 19.21万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 19.21万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 19.21万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 19.21万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.21万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了