Early Estimation of Breat Tumor Response to Therapy

乳腺肿瘤治疗反应的早期估计

基本信息

项目摘要

In previously published work by local coinvestigators a fundamental correlation between the increase in the quantitative MR apparent diffusion coefficient (ADC) measured over the pre- to early post-initiation therapy interval and the response of various brain tumors has been recently demonstrated. This work was demonstrated in the brains of both rats and humans and was based on a voxel-based analysis of change in the scatter plots of ADC values between rigidly registered pre- and post-therapeutic ADC MRI exams. The goal of this Project is to develop and refine registration techniques that not only demonstrate the same correlation exists in breast cancer as an early biomarker of cell death and potential surrogate for clinical outcome, but also increase the accuracy of such techniques by including perfusion-related computed parameters, and implementing accurate, automatic warping registration techniques. In addition to following the lead of the previous work which demonstrated the correlation using epidemiological methods, e.g. successful stratification of Kaplan-Meier plots based on ADC changes within volumes of interest defined by oncologists in both animals and humans, we will extend the approach to eliminate the need for multiple definition of gross volumes of interest by oncologists and improve the performance of the measure within heterogeneous tumors. Additionally for a subset of data we will carry histological results back to the in vivo images for correlation with histological truth. RELEVANCE (See instructions): . The development of accurate and automatic registration of interval MRI diffusion breast exams will help individuate neoadjuvant chemotherapy for breast cancer patients by improving the accuracy of estimating tumors' early response (1-3 weeks) to therapy.
在当地合作调查员之前发表的工作中, 定量磁共振表观扩散系数(ADC)在开始治疗前到治疗后早期的测量 时间间隔和对各种脑肿瘤的反应最近已经被证明。这项工作是 在大鼠和人类的大脑中都有展示,并基于基于体素的分析 治疗前和治疗后严格登记的ADC MRI检查之间的ADC值散点图。这个 该项目的目标是开发和改进注册技术,不仅展示相同的 乳腺癌作为细胞死亡的早期生物标记物和临床的潜在替代物存在相关性 结果,但也提高了这种技术的准确性,通过包括与血流灌注相关的计算机 参数,并实施准确的自动翘曲配准技术。除了以下内容 以前的工作使用流行病学方法证明了这种相关性,例如 基于以下定义的感兴趣体积内ADC变化的Kaplan-Meier图的成功分层 肿瘤学家在动物和人类中,我们都将推广这种方法,以消除多个 肿瘤学家对感兴趣的总体积的定义,并在以下方面改进测量业绩 异质性肿瘤。此外,对于数据的子集,我们将把组织学结果带回体内 与组织学真相相关的图像。 相关性(请参阅说明):。 发展准确和自动配准的间隔MRI扩散乳房检查将有所帮助 提高乳腺癌患者新辅助化疗估计的准确性实现个体化 肿瘤治疗的早期反应(1-3周)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Raymond Meyer其他文献

Charles Raymond Meyer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles Raymond Meyer', 18)}}的其他基金

Digital Imaging Processing Core
数字图像处理核心
  • 批准号:
    7214539
  • 财政年份:
    2006
  • 资助金额:
    $ 19.64万
  • 项目类别:
AUTOMATIC 3D REGISTRATION FOR ENHANCED CANCER MANAGEMENT
自动 3D 配准以增强癌症管理
  • 批准号:
    6608879
  • 财政年份:
    2002
  • 资助金额:
    $ 19.64万
  • 项目类别:
Automatic Three Dimensional (3D) Registration for Enhanced Cancer Management
自动三维 (3D) 配准以增强癌症管理
  • 批准号:
    8234852
  • 财政年份:
    2002
  • 资助金额:
    $ 19.64万
  • 项目类别:
Early Estimation of Breat Tumor Response to Therapy
乳腺肿瘤治疗反应的早期估计
  • 批准号:
    8376470
  • 财政年份:
    2002
  • 资助金额:
    $ 19.64万
  • 项目类别:
Automatic Three Dimensional (3D) Registration for Enhanced Cancer Management
自动三维 (3D) 配准以增强癌症管理
  • 批准号:
    8445391
  • 财政年份:
    2002
  • 资助金额:
    $ 19.64万
  • 项目类别:
AUTOMATIC 3D REGISTRATION FOR ENHANCED CANCER MANAGEMENT
自动 3D 配准以增强癌症管理
  • 批准号:
    7116974
  • 财政年份:
    2002
  • 资助金额:
    $ 19.64万
  • 项目类别:
Automatic Three Dimensional (3D) Registration for Enhanced Cancer Management
自动三维 (3D) 配准以增强癌症管理
  • 批准号:
    7611736
  • 财政年份:
    2002
  • 资助金额:
    $ 19.64万
  • 项目类别:
Automatic Three Dimensional (3D) Registration for Enhanced Cancer Management
自动三维 (3D) 配准以增强癌症管理
  • 批准号:
    8376476
  • 财政年份:
    2002
  • 资助金额:
    $ 19.64万
  • 项目类别:
Automatic Three Dimensional (3D) Registration for Enhanced Cancer Management
自动三维 (3D) 配准以增强癌症管理
  • 批准号:
    7802144
  • 财政年份:
    2002
  • 资助金额:
    $ 19.64万
  • 项目类别:
AUTOMATIC 3D REGISTRATION FOR ENHANCED CANCER MANAGEMENT
自动 3D 配准以增强癌症管理
  • 批准号:
    6932488
  • 财政年份:
    2002
  • 资助金额:
    $ 19.64万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.64万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 19.64万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 19.64万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 19.64万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 19.64万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 19.64万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 19.64万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 19.64万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 19.64万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 19.64万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了