Early Estimation of Breat Tumor Response to Therapy

乳腺肿瘤治疗反应的早期估计

基本信息

项目摘要

In previously published work by local coinvestigators a fundamental correlation between the increase in the quantitative MR apparent diffusion coefficient (ADC) measured over the pre- to early post-initiation therapy interval and the response of various brain tumors has been recently demonstrated. This work was demonstrated in the brains of both rats and humans and was based on a voxel-based analysis of change in the scatter plots of ADC values between rigidly registered pre- and post-therapeutic ADC MRI exams. The goal of this Project is to develop and refine registration techniques that not only demonstrate the same correlation exists in breast cancer as an early biomarker of cell death and potential surrogate for clinical outcome, but also increase the accuracy of such techniques by including perfusion-related computed parameters, and implementing accurate, automatic warping registration techniques. In addition to following the lead of the previous work which demonstrated the correlation using epidemiological methods, e.g. successful stratification of Kaplan-Meier plots based on ADC changes within volumes of interest defined by oncologists in both animals and humans, we will extend the approach to eliminate the need for multiple definition of gross volumes of interest by oncologists and improve the performance of the measure within heterogeneous tumors. Additionally for a subset of data we will carry histological results back to the in vivo images for correlation with histological truth. RELEVANCE (See instructions): . The development of accurate and automatic registration of interval MRI diffusion breast exams will help individuate neoadjuvant chemotherapy for breast cancer patients by improving the accuracy of estimating tumors' early response (1-3 weeks) to therapy.
在当地共同研究者先前发表的研究中, 在开始治疗前至治疗后早期测量的定量MR表观扩散系数(ADC) 间隔和各种脑肿瘤的反应最近已被证明。这项工作是 在大鼠和人类的大脑中证明,并基于基于体素的变化分析, 严格配准的治疗前和治疗后ADC MRI检查之间的ADC值散点图。的 本项目的目标是开发和完善注册技术,不仅证明了相同的 乳腺癌中存在相关性,作为细胞死亡的早期生物标志物和临床诊断的潜在替代物。 结果,而且还通过包括灌注相关的计算结果来增加这种技术的准确性。 参数,并实现准确的,自动翘曲配准技术。除了遵循 以前的工作,证明了使用流行病学方法的相关性,例如, 基于ADC变化的Kaplan-Meier图成功分层,其中ADC变化定义为 在动物和人类的肿瘤学家,我们将扩大的方法,以消除需要多个 肿瘤学家对感兴趣的总体积的定义,并在 异质性肿瘤此外,对于一部分数据,我们将组织学结果带回体内 图像与组织学真相的相关性。 相关性(参见说明): 准确和自动配准间隔MRI扩散乳腺检查的发展将有助于 提高乳腺癌患者新辅助化疗的个体化评估准确性 肿瘤对治疗的早期反应(1-3周)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Raymond Meyer其他文献

Charles Raymond Meyer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles Raymond Meyer', 18)}}的其他基金

Digital Imaging Processing Core
数字图像处理核心
  • 批准号:
    7214539
  • 财政年份:
    2006
  • 资助金额:
    $ 19.64万
  • 项目类别:
AUTOMATIC 3D REGISTRATION FOR ENHANCED CANCER MANAGEMENT
自动 3D 配准以增强癌症管理
  • 批准号:
    6608879
  • 财政年份:
    2002
  • 资助金额:
    $ 19.64万
  • 项目类别:
Automatic Three Dimensional (3D) Registration for Enhanced Cancer Management
自动三维 (3D) 配准以增强癌症管理
  • 批准号:
    8445391
  • 财政年份:
    2002
  • 资助金额:
    $ 19.64万
  • 项目类别:
Automatic Three Dimensional (3D) Registration for Enhanced Cancer Management
自动三维 (3D) 配准以增强癌症管理
  • 批准号:
    8234852
  • 财政年份:
    2002
  • 资助金额:
    $ 19.64万
  • 项目类别:
Early Estimation of Breat Tumor Response to Therapy
乳腺肿瘤治疗反应的早期估计
  • 批准号:
    8376470
  • 财政年份:
    2002
  • 资助金额:
    $ 19.64万
  • 项目类别:
AUTOMATIC 3D REGISTRATION FOR ENHANCED CANCER MANAGEMENT
自动 3D 配准以增强癌症管理
  • 批准号:
    7116974
  • 财政年份:
    2002
  • 资助金额:
    $ 19.64万
  • 项目类别:
Automatic Three Dimensional (3D) Registration for Enhanced Cancer Management
自动三维 (3D) 配准以增强癌症管理
  • 批准号:
    7611736
  • 财政年份:
    2002
  • 资助金额:
    $ 19.64万
  • 项目类别:
Automatic Three Dimensional (3D) Registration for Enhanced Cancer Management
自动三维 (3D) 配准以增强癌症管理
  • 批准号:
    8376476
  • 财政年份:
    2002
  • 资助金额:
    $ 19.64万
  • 项目类别:
Automatic Three Dimensional (3D) Registration for Enhanced Cancer Management
自动三维 (3D) 配准以增强癌症管理
  • 批准号:
    7802144
  • 财政年份:
    2002
  • 资助金额:
    $ 19.64万
  • 项目类别:
AUTOMATIC 3D REGISTRATION FOR ENHANCED CANCER MANAGEMENT
自动 3D 配准以增强癌症管理
  • 批准号:
    6932488
  • 财政年份:
    2002
  • 资助金额:
    $ 19.64万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.64万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 19.64万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 19.64万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 19.64万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 19.64万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 19.64万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 19.64万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 19.64万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 19.64万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 19.64万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了