Impact of Adverse Life Events on Neuroplasticity

不良生活事件对神经可塑性的影响

基本信息

  • 批准号:
    8736525
  • 负责人:
  • 金额:
    $ 50.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

Chronic stresses such as loss of a spouse or sleep deprivation, may cause memory impairments and increase susceptibility to AD. Experimental models of stress demonstrate impairments in spatial memory, contextual memory and object recognition in response to psychosocial or environmental stress. Yet, it remains to be determined if and how environmental stress modifies the cellular and molecular alterations that result in cognitive deficits in normal aging and in AD. We are employing mouse models to test the hypothesis that chronic psychosocial stress and sleep deprivation will accelerate the development of cognitive impairment in normal aging and in AD. Using the triple-transgenic AD mouse model (3xTgAD mice) we are determining the effects of chronic stress on amyloidogenes, tau pathology, synaptic dysfunction and learning and memory impairment. We are testing the hypothesis that aging and AD compromise adaptive cellular stress response pathways resulting in increased oxidative stress associated with reduced expression of neuroprotective proteins such as brain-derived neurotrophic factor (BDNF) and antioxidant enzymes. In related studies we have found that, in a model of type 2 diabetes, overeating results in hyperactivation of the neuroendocrine stress system, and that elevated levels of adrenal glucocorticoids impair hippocampal synaptic plasticity and neurogenesis, and that these stress-related alterations are associated with a deficit in cognitive function. Interestingly, regular exercise and dietary energy restriction can counteract the adverse effects of diabetes on hippocampal plasticity by a mechanism involving up-regulation of the expression of the neurotrophic factor BDNF. Chronic stress may be a risk factor for developing Alzheimer's disease (AD), but most studies of the effects of stress in models of AD utilize acute adverse stressors of questionable clinical relevance. We therefore undertook a study to determine how chronic psychosocial stress affects behavioral and pathological outcomes in an animal model of AD, and to elucidate underlying mechanisms. A triple-transgenic mouse model of AD (3xTgAD mice) and nontransgenic control mice were used to test for an affect of chronic mild social stress on blood glucose, plasma glucocorticoids, plasma insulin, anxiety, and hippocampal amyloid, phosphorylated tau (ptau), and brain-derived neurotrophic factor (BDNF) levels. Despite the fact that both control and 3xTgAD mice experienced rises in corticosterone during episodes of mild social stress, at the end of the 6-week stress period 3xTgAD mice displayed increased anxiety, elevated levels of amyloid; oligomers and intraneuronal amyloid;, and decreased brain-derived neurotrophic factor levels, whereas control mice did not. Our findings suggest 3xTgAD mice are more vulnerable than control mice to chronic psychosocial stress, and that such chronic stress exacerbates amyloid; accumulation and impairs neurotrophic signaling. Parkinson's disease (PD) patients often exhibit impaired regulation of heart rate by the autonomic nervous system (ANS) that may precede motor symptoms in many cases. Results of autopsy studies suggest that brainstem pathology, including the accumulation of -synuclein, precedes damage to dopaminergic neurons in the substantia nigra in PD. However, the molecular and cellular mechanisms responsible for the early dysfunction of brainstem autonomic neurons are unknown. Here we report that mice expressing a mutant form of -synuclein that causes familial PD exhibit aberrant autonomic control of the heart characterized by elevated resting heart rate and an impaired cardiovascular stress response, associated with reduced parasympathetic activity and accumulation of -synuclein in the brainstem. These ANS abnormalities occur early in the disease process. Adverse effects of -synuclein on the control of heart rate are exacerbated by a high energy diet and ameliorated by intermittent energy restriction. Our findings establish a mouse model of early dysregulation of brainstem control of the cardiovascular system in PD, and further suggest the potential for energy restriction to attenuate ANS dysfunction, particularly in overweight individuals. Age-associated dysregulation of sleep can be worsened by Alzheimer's disease (AD). AD and sleep restriction both impair cognition, yet it is unknown if mild chronic sleep restriction modifies the proteopathic processes involved in AD. The goal of this work was to test the hypothesis that sleep restriction worsens memory impairments, and amyloid &#946;-peptide (A&#946;) and pTau accumulations in the brain in a mouse model of AD, with a focus on a role for circulating glucocorticoids (GC). Male 3xTgAD mice were subjected to sleep restriction (SR) for 6h/day for 6 weeks using the modified multiple platform technique, and behavioral (Morris water maze, fear conditioning, open field) and biochemical (immunoblot) outcomes were compared to mice undergoing daily cage transfers (large cage control; LCC) as well as control mice that remained in their home cage (control; CTL). At one week, both LCC and SR mice displayed significant elevations in plasma corticosterone compared to CTL (p<0.002). By four weeks, SR mice displayed a two-fold increase in circulating corticosterone levels compared to CTL. Behavioral data indicated deficits in contextual and cued memory in SR mice that were not present for LCC or CTL (p<0.04). Both A&#946; and pTau levels increased in the cortex of SR mice compared to CTL and LCC; however these changes were not noted in the hippocampus. Significant positive correlations between cortical A&#946; and pTau levels and circulating corticosterone indicate a potential role for GCs in mediating behavioral and biochemical changes observed after sleep restriction in a mouse model of AD. The ability to control impulses varies greatly, and difficulty with impulse control can have severe consequences; in the extreme, it is the defining feature of many psychiatric disorders. Evidence from disparate lines of research suggests that uric acid is elevated in psychiatric disorders characterized by high impulsivity, such as attention-deficit/hyperactivity disorder and bipolar disorder. The present research tests the hypothesis that impulsivity is associated with higher uric acid in humans and mice. Using two longitudinal, nonclinical community samples (total n = 6883), we tested whether there is an association between uric acid and normal variation in trait impulsivity measured with the Revised NEO Personality Inventory. We also examined the effect of uric acid on behavior by comparing wild-type mice, which naturally have low levels of uric acid, with mice genetically modified to accumulate high levels of uric acid. In both human samples, the emotional aspects of trait impulsivity, specifically impulsiveness and excitement seeking, were associated with higher levels of uric acid concurrently and when uric acid was measured 3 to 5 years later. Consistent with the human data, the genetically modified mice displayed significantly more exploratory and novelty-seeking behavior than the wild-type mice. Higher uric acid was associated with impulsivity in both humans and mice. The identification of biological markers of impulsivity may lead to a better understanding of the physiological mechanisms involved in impulsivity and may suggest potential targets for therapeutic intervention.
长期的压力,如丧偶或睡眠不足,可能导致记忆障碍,增加对阿尔茨海默病的易感性。压力的实验模型表明,在社会心理或环境压力下,空间记忆、情境记忆和物体识别受损。然而,环境压力是否以及如何改变导致正常衰老和AD认知缺陷的细胞和分子改变仍有待确定。我们正在使用小鼠模型来验证慢性社会心理压力和睡眠剥夺会加速正常衰老和AD患者认知障碍的发展这一假设。利用三重转基因AD小鼠模型(3xTgAD小鼠),我们正在确定慢性应激对淀粉样蛋白形成、tau病理、突触功能障碍和学习记忆障碍的影响。我们正在测试衰老和AD损害适应性细胞应激反应途径的假设,导致氧化应激增加,与脑源性神经营养因子(BDNF)和抗氧化酶等神经保护蛋白表达减少相关。在相关研究中,我们发现,在2型糖尿病模型中,暴饮暴食导致神经内分泌应激系统的过度激活,肾上腺糖皮质激素水平升高损害海马突触可塑性和神经发生,这些与压力相关的改变与认知功能缺陷有关。有趣的是,有规律的运动和饮食能量限制可以通过上调神经营养因子BDNF的表达来抵消糖尿病对海马可塑性的不利影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Mattson其他文献

Mark Mattson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Mattson', 18)}}的其他基金

Stem Cells And Neurogenesis
干细胞和神经发生
  • 批准号:
    7591990
  • 财政年份:
  • 资助金额:
    $ 50.82万
  • 项目类别:
Stem Cells And Neurogenesis
干细胞和神经发生
  • 批准号:
    8335818
  • 财政年份:
  • 资助金额:
    $ 50.82万
  • 项目类别:
Apoptosis In Neurodegenerative Disorders
神经退行性疾病中的细胞凋亡
  • 批准号:
    8736518
  • 财政年份:
  • 资助金额:
    $ 50.82万
  • 项目类别:
Hormesis/Adaptive Stress Responses and Aging
毒物兴奋/适应性应激反应和衰老
  • 批准号:
    8736526
  • 财政年份:
  • 资助金额:
    $ 50.82万
  • 项目类别:
Neuroprotective And Neurorestorative Signaling Mechanisms
神经保护和神经恢复信号机制
  • 批准号:
    8552362
  • 财政年份:
  • 资助金额:
    $ 50.82万
  • 项目类别:
Cellular And Molecular Pathogenesis Of Alzheimer
阿尔茨海默病的细胞和分子发病机制
  • 批准号:
    8736517
  • 财政年份:
  • 资助金额:
    $ 50.82万
  • 项目类别:
Synaptic Plasticity In Aging And Neurodegenerative Disorders
衰老和神经退行性疾病中的突触可塑性
  • 批准号:
    8736521
  • 财政年份:
  • 资助金额:
    $ 50.82万
  • 项目类别:
Dietary Modification Of Brain Aging And Alzheimer's Disease
大脑衰老和阿尔茨海默病的饮食调整
  • 批准号:
    9770106
  • 财政年份:
  • 资助金额:
    $ 50.82万
  • 项目类别:
Dietary Modification Of Brain Aging And Neurodegenerative Disorders
大脑衰老和神经退行性疾病的饮食调整
  • 批准号:
    8148215
  • 财政年份:
  • 资助金额:
    $ 50.82万
  • 项目类别:
Hormesis/Adaptive Stress Responses and Aging
毒物兴奋/适应性应激反应和衰老
  • 批准号:
    8335823
  • 财政年份:
  • 资助金额:
    $ 50.82万
  • 项目类别:

相似海外基金

Role of hypothalamic MC4R in glucose homeostasis via a novel neuroendocrine circuit involving the kidneys and adrenal glands
下丘脑 MC4R 通过涉及肾脏和肾上腺的新型神经内分泌回路在葡萄糖稳态中的作用
  • 批准号:
    10454300
  • 财政年份:
    2021
  • 资助金额:
    $ 50.82万
  • 项目类别:
Role of hypothalamic MC4R in glucose homeostasis via a novel neuroendocrine circuit involving the kidneys and adrenal glands
下丘脑 MC4R 通过涉及肾脏和肾上腺的新型神经内分泌回路在葡萄糖稳态中的作用
  • 批准号:
    10666539
  • 财政年份:
    2021
  • 资助金额:
    $ 50.82万
  • 项目类别:
Role of hypothalamic MC4R in glucose homeostasis via a novel neuroendocrine circuit involving the kidneys and adrenal glands
下丘脑 MC4R 通过涉及肾脏和肾上腺的新型神经内分泌回路在葡萄糖稳态中的作用
  • 批准号:
    10296199
  • 财政年份:
    2021
  • 资助金额:
    $ 50.82万
  • 项目类别:
Role of hypothalamic MC4R in glucose homeostasis via a novel neuroendocrine circuit involving the kidneys and adrenal glands
下丘脑 MC4R 通过涉及肾脏和肾上腺的新型神经内分泌回路在葡萄糖稳态中的作用
  • 批准号:
    10854123
  • 财政年份:
    2021
  • 资助金额:
    $ 50.82万
  • 项目类别:
Interaction of adrenal glands and liver in canine hepatocellular carcinoma
犬肝细胞癌中肾上腺和肝脏的相互作用
  • 批准号:
    20H03139
  • 财政年份:
    2020
  • 资助金额:
    $ 50.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Role of dendritic cells in adrenal glands of healthy and arthritic rats
树突状细胞在健康和关节炎大鼠肾上腺中的作用
  • 批准号:
    235438724
  • 财政年份:
    2013
  • 资助金额:
    $ 50.82万
  • 项目类别:
    Research Grants
Role of neural cell adhesion molecules in structural and functional remodeling of fetal adrenal glands
神经细胞粘附分子在胎儿肾上腺结构和功能重塑中的作用
  • 批准号:
    20591305
  • 财政年份:
    2008
  • 资助金额:
    $ 50.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Search for the novel etiology in disorders of sex development (DSD) caused by abnormalities of adrenal glands and gonads.
寻找由肾上腺和性腺异常引起的性发育障碍 (DSD) 的新病因。
  • 批准号:
    16086202
  • 财政年份:
    2004
  • 资助金额:
    $ 50.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Effects of endocrine disrupters on function of thyroid gland, adrenal glands and gonads
内分泌干​​扰物对甲状腺、肾上腺和性腺功能的影响
  • 批准号:
    11839003
  • 财政年份:
    1999
  • 资助金额:
    $ 50.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Roles of Thyroid and Adrenal glands in the regulation of hypothalamo-hypophysial-ovarian axis in the rat.
甲状腺和肾上腺在大鼠下丘脑-垂体-卵巢轴调节中的作用。
  • 批准号:
    06660375
  • 财政年份:
    1994
  • 资助金额:
    $ 50.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了