Data-Driven Approaches for Molecular Docking

数据驱动的分子对接方法

基本信息

  • 批准号:
    8511690
  • 负责人:
  • 金额:
    $ 29.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-07-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Molecular docking approaches for drug discovery are used for predicting ligand binding modes, ligand binding affinities, and for computational screening to identify new specific ligands for biological targets of pharmaceutical relevance. Current approaches are characterized by high inter-target variability and sharp limitations in ability to make accurate predictions for new ligands that are structurally different from known ones. Approaches that model protein flexibility directly or approach simulation-level detail in complex molecular systems have shown some success. However, they are generally applicable only in low throughput and in cases where high-quality experimentally determined protein target structures are available. This is in part why "me-too" drugs dominate the pharmaceutical marketplace and development pipeline. Such drugs generally bring much less pharmacological novelty to patient treatment than structurally novel therapeutics. We propose an integrated set of methods for molecular docking that treats protein flexibility in a serious manner, is computationally efficient enough for wide use, and which offers the opportunity to effectively use docking in cases where few experimental structures exist for a biological target of interest. Our recent work has established an approach to treating protein flexibility in docking that addresses large protein movements by considering multiple experimental structures and small ligand-dependent movements by protein/ligand complex relaxation beginning from many putative ligand dockings. We have also established an approach for de novo protein pocket induction that constructs a binding site based solely on ligand binding data that is capable of making accurate predictions of binding geometry and binding affinity for structurally novel ligands. Our proposed work will combine these approaches. In cases where protein structural information is available, experimentally determined structures will undergo additional sampling, followed by refinement of the binding pockets based on ligand binding data in order to improve the predictions obtained from docking based upon our existing methods developed for de novo pocket construction. In addition to data-driven pocket refinement, the proposed effort requires improvement in our scoring functions for docking, taking into account vastly more data and explicit modeling of protein flexibility and of the unbound states of proteins and ligands. We will also put significant effort into algorithmic improvements that will result in typical run-times on common single-processor hardware of several minutes per ligand to yield predictions of binding geometry and affinity. We believe that a widely applicable, genuinely predictive, and computationally tractable modeling approach to docking will substantially improve drug discovery in practice. These methods will facilitate identification of novel lead compounds from directed lead optimization and computational screening exercises.
描述(由申请人提供):用于药物发现的分子对接方法用于预测配体结合模式、配体结合亲和力,并用于计算筛选,以鉴定与药物相关的生物靶标的新特异性配体。目前的方法的特征在于高的靶间变异性和对结构上不同于已知配体的新配体进行准确预测的能力的急剧限制。直接模拟蛋白质柔性或在复杂分子系统中接近模拟水平细节的方法已经取得了一些成功。然而,它们通常仅适用于低通量和高质量实验确定的蛋白质靶结构可用的情况。这也是为什么“模仿”药物在制药市场和开发管道中占据主导地位的部分原因。这类药物给患者治疗带来的药理学新奇通常比结构新颖的治疗剂少得多。我们提出了一套完整的分子对接方法,以严肃的方式对待蛋白质的灵活性,计算效率足够广泛使用,并提供了机会,有效地使用对接的情况下,很少有实验结构存在的生物目标的兴趣。我们最近的工作已经建立了一种方法来处理蛋白质的灵活性对接,解决大蛋白质的运动,考虑多个实验结构和小配体依赖的运动蛋白质/配体复合物的松弛开始从许多假定的配体对接。我们还建立了一种从头蛋白口袋诱导的方法,该方法仅基于配体结合数据构建结合位点,能够准确预测结构新颖配体的结合几何形状和结合亲和力。我们提出的工作将联合收割机结合这些方法。在蛋白质结构信息可用的情况下,实验确定的结构将进行额外的采样,然后根据配体结合数据对结合口袋进行细化,以改善基于我们现有的从头口袋构建方法从对接中获得的预测。除了数据驱动的口袋细化,所提出的努力需要改进我们的评分功能对接,考虑到更多的数据和蛋白质的灵活性和蛋白质和配体的未结合状态的明确建模。我们还将投入大量的精力到算法的改进,这将导致在常见的单处理器硬件上每个配体几分钟的典型运行时间,以产生结合几何形状和亲和力的预测。我们相信,一个广泛适用的,真正的预测性,和计算上易于处理的对接建模方法将大大提高药物发现在实践中。这些方法将有助于识别新的先导化合物,直接铅优化和计算筛选练习。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Molecular shape and medicinal chemistry: a perspective.
  • DOI:
    10.1021/jm900818s
  • 发表时间:
    2010-05-27
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Nicholls A;McGaughey GB;Sheridan RP;Good AC;Warren G;Mathieu M;Muchmore SW;Brown SP;Grant JA;Haigh JA;Nevins N;Jain AN;Kelley B
  • 通讯作者:
    Kelley B
Iterative refinement of a binding pocket model: active computational steering of lead optimization.
  • DOI:
    10.1021/jm301210j
  • 发表时间:
    2012-10-25
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Varela, Rocco;Walters, W. Patrick;Goldman, Brian B.;Jain, Ajay N.
  • 通讯作者:
    Jain, Ajay N.
Does your model weigh the same as a duck?
Prediction of Off-Target Drug Effects Through Data Fusion
Chemical structural novelty: on-targets and off-targets.
  • DOI:
    10.1021/jm200666a
  • 发表时间:
    2011-10-13
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Yera, Emmanuel R.;Cleves, Ann E.;Jain, Ajay N.
  • 通讯作者:
    Jain, Ajay N.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

AJAY N JAIN其他文献

AJAY N JAIN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('AJAY N JAIN', 18)}}的其他基金

Binding-Site Modeling with Multiple-Instance Machine-Learning
使用多实例机器学习的结合位点建模
  • 批准号:
    8436505
  • 财政年份:
    2013
  • 资助金额:
    $ 29.59万
  • 项目类别:
Binding-Site Modeling with Multiple-Instance Machine-Learning
使用多实例机器学习的结合位点建模
  • 批准号:
    8598096
  • 财政年份:
    2013
  • 资助金额:
    $ 29.59万
  • 项目类别:
Binding-Site Modeling with Multiple-Instance Machine-Learning
使用多实例机器学习的结合位点建模
  • 批准号:
    9904662
  • 财政年份:
    2013
  • 资助金额:
    $ 29.59万
  • 项目类别:
Machine Learning in Chemistry and Biology
化学和生物学中的机器学习
  • 批准号:
    7931152
  • 财政年份:
    2009
  • 资助金额:
    $ 29.59万
  • 项目类别:
INFORMATICS
信息学
  • 批准号:
    7506559
  • 财政年份:
    2007
  • 资助金额:
    $ 29.59万
  • 项目类别:
Machine Learning in Chemistry and Biology
化学和生物学中的机器学习
  • 批准号:
    7087989
  • 财政年份:
    2005
  • 资助金额:
    $ 29.59万
  • 项目类别:
Data-Driven Approaches for Molecular Docking
数据驱动的分子对接方法
  • 批准号:
    8117772
  • 财政年份:
    2005
  • 资助金额:
    $ 29.59万
  • 项目类别:
Machine Learning in Chemistry and Biology
化学和生物学中的机器学习
  • 批准号:
    7448703
  • 财政年份:
    2005
  • 资助金额:
    $ 29.59万
  • 项目类别:
Machine Learning in Chemistry and Biology
化学和生物学中的机器学习
  • 批准号:
    6965574
  • 财政年份:
    2005
  • 资助金额:
    $ 29.59万
  • 项目类别:
Machine Learning in Chemistry and Biology
化学和生物学中的机器学习
  • 批准号:
    7257023
  • 财政年份:
    2005
  • 资助金额:
    $ 29.59万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 29.59万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.59万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 29.59万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.59万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 29.59万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.59万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 29.59万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 29.59万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 29.59万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.59万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了