Micro-tumor detection by quantifying tumor-induced vascular abnormalities (PQ-13)
通过量化肿瘤引起的血管异常来检测微肿瘤 (PQ-13)
基本信息
- 批准号:8535710
- 负责人:
- 金额:$ 42.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcousticsAddressAlgorithmsAngiographyAnimalsBenignBiological MarkersBlood VesselsBreast Cancer ModelCaliberCancer DetectionCell CountCellsCharacteristicsClassificationClinicalContrast MediaControl AnimalDataDetectionDevelopmentDiscriminant AnalysisEarly DiagnosisEngineeringEquationFoundationsFrequenciesFutureGenetically Engineered MouseGoalsHistologyImageImage AnalysisImaging DeviceImaging TechniquesIn VitroLesionMalignant - descriptorMalignant NeoplasmsMapsMeasurementMedicineMicroscopyModelingMorphologyNoiseOnset of illnessOpticsPalpablePenetrationPlayProcessProtocols documentationRandomizedReceiver Operating CharacteristicsResolutionRiskRodentRoleRouteScreening for cancerSensitivity and SpecificitySignal TransductionSolid NeoplasmSpecificityStructureSystemSystems AnalysisTechnologyTestingTissuesTreatment outcomeTumor VolumeUltrasonographyUnited States National Institutes of HealthVascular remodelingWorkangiogenesisbasecancer cellclinical applicationclinical practiceclinically relevantcostdesignimaging modalityimprovedin vivoinnovationintravital microscopymalignant breast neoplasmmillimetermouse modelneoplastic cellnew technologynovelpre-clinicalpreclinical studyprospectiveresponsesuccesstumor
项目摘要
DESCRIPTION (provided by applicant): Current imaging modalities allow detection of tumors composed of approximately 107 cells or in the range of 1 cubic millimeter. Any increase in imaging sensitivity provides valuable advances in tumor detection and also treatment outcomes; however, a major increase in detection sensitivity would provide a radical change in how we might employ imaging in clinical practice. Ultrasound (US) will likely play a significant and expanding role in oncological imaging in the future because it is safe, low-cost, and readily portable. However, due to fundamental resolution limitations, clinical US can only detect tumor masses on the order of a few millimeters, or larger. In order to improve this detection sensitivity a paradigm shift in the US approach for imaging tumors is needed. This project proposes such a shift. It is well known that tumors dramatically distort microvasculature throughout the angiogenic process. Data show that substantial changes in microvasculature structure occur after the arrival of only 10s to 100s of tumor cells, that these changes extend to vessels that are
relatively large (hundreds of microns in diameter), and that microvascular changes extend well beyond tumor margins, even soon after the onset of disease. These unique microvascular "cancer signatures" provide us with a means to overcome traditional resolution limitations which otherwise impair micro-tumor detection. Thus, our innovative response to improving imaging sensitivity to micro-cancers is to detect these microvascular changes, rather than the solid tumor itself. Prior groups have illustrated the potential for this concept using optical microscopy however optical microscopy is inherently non-clinically translatable for this application, and hence we will utilize a novel ultrasound approach. Although previously, ultrasound has not provided utility in assessing changes in microvascular structure, our group has recently implemented a new US imaging technique called "Acoustic Angiography" which provides supreme signal-to-noise and high resolution for imaging microvessel structure. This new imaging technique thus enables microvessel segmentation and tortuosity quantification. Our first hypothesis is that we can optimize this imaging approach for adequate spatial resolution and depth of penetration for clinical implementation. Our second hypothesis is that we can use acoustic angiography to detect tumor-induced microvascular changes when tumors are at least two to three orders of magnitude smaller than current detection limits. Our third hypothesis is that we can develop current segmentation and analysis algorithms which will characterize microvessel morphology and provide a specific and sensitive classification approach for detecting tissue that is at risk for hosting micro-tumors. Encouraging preliminary data have already illustrated our ability use acoustic angiography to discriminate small tumors and healthy tissue based on an analysis of microvessel morphology alone, and these further studies will enable a comprehensive development of this promising new technology. Our approach will involve in-vitro studies as well as preclinical in-vivo studies using clinically-relevant geneticaly engineered models of breast cancer.
描述(申请人提供):目前的成像方式允许检测由大约107个细胞组成的肿瘤或1立方毫米范围内的肿瘤。成像灵敏度的任何提高都将在肿瘤检测和治疗结果方面提供有价值的进步;然而,检测灵敏度的重大提高将从根本上改变我们在临床实践中使用成像的方式。超声(US)因其安全、低成本、便于携带等优点,在未来的肿瘤学成像中可能扮演重要的角色,并不断扩大。然而,由于基本分辨率的限制,临床US只能检测到几毫米或更大的肿瘤肿块。为了提高这种检测灵敏度,需要改变美国对肿瘤成像的方法。这个项目提出了这样的转变。众所周知,肿瘤在整个血管生成过程中会严重扭曲微血管。数据显示,微血管结构的实质性变化发生在肿瘤细胞到达10s至100s之后,这些变化延伸到
相对较大(直径数百微米),微血管变化远远超出肿瘤边缘,甚至在发病后不久也是如此。这些独特的微血管“癌症信号”为我们提供了一种克服传统分辨率限制的方法,否则就会损害微肿瘤的检测。因此,我们对提高对微小癌症的成像敏感性的创新反应是检测这些微血管的变化,而不是实体肿瘤本身。先前的研究小组已经使用光学显微镜说明了这一概念的潜力,然而光学显微镜对于这一应用来说本质上是非临床可翻译的,因此我们将利用一种新的超声方法。虽然以前超声在评估微血管结构的变化方面没有提供有用的工具,但我们的团队最近实施了一种新的美国成像技术,称为“声学血管成像”,它为成像微血管结构提供了最高的信噪比和高分辨率。因此,这种新的成像技术使得微血管分割和曲折量化成为可能。我们的第一个假设是,我们可以优化这种成像方法,以获得足够的空间分辨率和穿透深度,以便临床实施。我们的第二个假设是,当肿瘤比目前的检测极限小至少两到三个数量级时,我们可以使用声学血管造影术来检测肿瘤引起的微血管变化。我们的第三个假设是,我们可以开发当前的分割和分析算法,这些算法将表征微血管的形态,并为检测存在微肿瘤风险的组织提供一种特定和敏感的分类方法。令人鼓舞的初步数据已经表明,我们有能力使用声学血管造影术来区分小肿瘤和健康组织,仅基于微血管形态的分析,这些进一步的研究将使这项前景光明的新技术的全面发展成为可能。我们的方法将包括使用临床相关的乳腺癌基因工程模型进行的体外研究和临床前体内研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul A Dayton其他文献
Therapeutic ultrasound as a potential male contraceptive: power, frequency and temperature required to deplete rat testes of meiotic cells and epididymides of sperm determined using a commercially available system
- DOI:
10.1186/1477-7827-10-7 - 发表时间:
2012-01-01 - 期刊:
- 影响因子:4.700
- 作者:
James K Tsuruta;Paul A Dayton;Caterina M Gallippi;Michael G O'Rand;Michael A Streicker;Ryan C Gessner;Thomas S Gregory;Erick JR Silva;Katherine G Hamil;Glenda J Moser;David C Sokal - 通讯作者:
David C Sokal
Paul A Dayton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul A Dayton', 18)}}的其他基金
Parametric optimization of ultrasound-mediated immuno-modulation for pancreatic cancer therapy
超声介导的胰腺癌免疫调节的参数优化
- 批准号:
9979314 - 财政年份:2020
- 资助金额:
$ 42.87万 - 项目类别:
Parametric optimization of ultrasound-mediated immuno-modulation for pancreatic cancer therapy
超声介导的胰腺癌免疫调节的参数优化
- 批准号:
10375345 - 财政年份:2020
- 资助金额:
$ 42.87万 - 项目类别:
Parametric optimization of ultrasound-mediated immuno-modulation for pancreatic cancer therapy
超声介导的胰腺癌免疫调节的参数优化
- 批准号:
10092130 - 财政年份:2020
- 资助金额:
$ 42.87万 - 项目类别:
Treating Tumoral Hypoxia via Ultrasound-Guided Oxygen Release for Improving Radiation Therapy
通过超声引导释氧治疗肿瘤缺氧以改善放射治疗
- 批准号:
9978579 - 财政年份:2018
- 资助金额:
$ 42.87万 - 项目类别:
Treating Tumoral Hypoxia via Ultrasound-Guided Oxygen Release for Improving Radiation Therapy
通过超声引导释氧治疗肿瘤缺氧以改善放射治疗
- 批准号:
10632112 - 财政年份:2018
- 资助金额:
$ 42.87万 - 项目类别:
Treating Tumoral Hypoxia via Ultrasound-Guided Oxygen Release for Improving Radiation Therapy
通过超声引导释氧治疗肿瘤缺氧以改善放射治疗
- 批准号:
10402933 - 财政年份:2018
- 资助金额:
$ 42.87万 - 项目类别:
Treating Tumoral Hypoxia via Ultrasound-Guided Oxygen Release for Improving Radiation Therapy
通过超声引导释氧治疗肿瘤缺氧以改善放射治疗
- 批准号:
10163814 - 财政年份:2018
- 资助金额:
$ 42.87万 - 项目类别:
Acoustic Angiography Using Dual-Frequency and Ultrawideband CMUT Arrays
使用双频和超宽带 CMUT 阵列的声学血管造影
- 批准号:
9899252 - 财政年份:2018
- 资助金额:
$ 42.87万 - 项目类别:
High Frame Rate 3-D Super Resolution Ultrasound Microvascular Imaging
高帧率 3D 超分辨率超声微血管成像
- 批准号:
10478978 - 财政年份:2017
- 资助金额:
$ 42.87万 - 项目类别:
High Frame Rate 3-D Super Resolution Ultrasound Microvascular Imaging
高帧率 3D 超分辨率超声微血管成像
- 批准号:
10249991 - 财政年份:2017
- 资助金额:
$ 42.87万 - 项目类别:
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 42.87万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 42.87万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 42.87万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 42.87万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 42.87万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 42.87万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 42.87万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 42.87万 - 项目类别:
Standard Grant
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 42.87万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 42.87万 - 项目类别:
Discovery Launch Supplement














{{item.name}}会员




