New composite material design based on studies of tooth-composite and microbial i

基于牙齿复合材料和微生物研究的新型复合材料设计

基本信息

  • 批准号:
    8509576
  • 负责人:
  • 金额:
    $ 19.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-27 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The proposed research will establish models for testing different strategies and materials to reduce degradation of the bonded interfaces, with the intent of synthesizing materials with increased resistant to bacterial invasion and ultimately increasing the restoration's longevity. Objective: To study the degradation of resin-tooth interfacial margins with an in vitro simulated human oral system and teeth restored using clinical practice methods. This work will seek to correlate degradation product levels from restored teeth to bacterial migration into compromised interfaces. Methods: Bonded resin-dentin specimens will be incubated with simulated human saliva esterase (SHSE) for up to 180-days. Post degradation specimens will be exposed to S. mutans UA159 alone or with Lactobacillus casei ATCC 746 in a chemostat based biofilms fermentor (CBBF), mimicking oral conditions for 7 days. The specimens will then be stained using Live/Dead Baclight Bacterial Viability Kit. Stained specimens will be assessed individually for marginal interface morphology, and bacterial penetration and viability using confocal laser scanning microscopy (CLSM). Objective: To establish methods for reproducibly measuring gene expression of Streptococcus mutans and Lactobacillus casei in situ after formation of biofilms on resin composite, along the resin-dentin interfacial gap, and compared with impermeable surfaces and planktonic cells. Methods: Genome-wide transciptome analyses (DNA microarrays) and individual gene transcript analyses (Quantitative RT-PCR) will be used to identify gens activated by material degradation products. Using Fluorescent in situ hybridizaton (FISH) physiologically relevant in vitro and in situ spatial bacterial gene expression will be observed within the resin- dentin interface using resin-dentin specimens with pre-define interfacial marginal gap. Objective: To measure hydrolytic mediated degradation of resin-composites and adhesives by bacteria. Methods: Adhesive and composite-resin (either commercial or experimental anti-microbial, see below) materials will be incubated in buffer, SHSE, S. mutans UA159 +media or media alone. The biostability of the materials, as measured by the release of degradation products, will be assessed by high performance liquid chromatography (HPLC) combined with UV spectroscopy and mass spectrometry. Objective: To develop new antibacterial resins to reduce bacterial load and ingress over the restoration's surface and along the resin-dentin marginal interface. Methods: Anti-microbial resin will be synthesized using covalently coupled drugs (metronidazole, or Clavulanic acid and ampicillin). The effect of novel anti-microbials on gene expression and bacterial microleakage will be assessed using the methods described above. This approach to material design is novel to the dental health care community and has the potential to change the way composite resin materials and adhesives are formulated, tested and applied. PUBLIC HEALTH RELEVANCE: Establishing model systems to assess physiologically relevant interactions occurring during salivary and bacterial degradation of dental materials is required to develop the design and application of new composite resin formulations and to provide accurate safety information to health care practitioners and patients. The proposed research will establish models for testing different strategies and materials to reduce degradation of the bonded interfaces, with the intent of synthesizing materials with increased resistance to bacterial invasion and ultimately increasing the restoration's longevity. This approach to material design is novel to the dental health care community and has the potential to change the way composite resin materials and adhesives are formulated, tested, and applied
描述(由申请人提供):拟议的研究将建立模型,用于测试不同的策略和材料,以减少粘合界面的降解,目的是合成具有更高细菌入侵抗性的材料,并最终增加修复体的寿命。目的:目的:通过体外模拟人口腔系统,研究树脂-牙界面边缘的降解情况,并结合临床实践进行修复。这项工作将寻求相关的降解产物水平从修复的牙齿到细菌迁移到受损的接口。方法:将粘结的树脂牙本质标本与模拟人唾液酯酶(SHSE)孵育长达180天。降解后样本将暴露于S。在基于恒化器的生物膜发酵罐(CBBF)中,模拟口服条件,将变形杆菌UA 159单独或与干酪乳杆菌ATCC 746一起培养7天。然后使用Live/Dead Baclight细菌活力试剂盒对标本进行染色。将使用共聚焦激光扫描显微镜(CLSM)单独评估染色标本的边缘界面形态、细菌渗透和活力。目的:建立一种可重复地原位检测变形链球菌和干酪乳杆菌在树脂复合材料上形成生物膜后、沿着树脂-牙本质界面间隙的基因表达的方法,并与不渗透表面和渗透细胞进行比较。研究方法:全基因组转录组分析(DNA微阵列)和单个基因转录本分析(定量RT-PCR)将用于鉴定材料降解产物激活的基因。使用荧光原位杂交(FISH),将使用具有预定界面边缘间隙的树脂-牙本质标本在树脂-牙本质界面内观察生理相关的体外和原位空间细菌基因表达。目的:测定细菌对树脂复合材料和胶粘剂的水解降解作用。方法:将粘合剂和复合树脂(商业或实验性抗微生物剂,见下文)材料在缓冲液、SHSE、S。mutans UA 159+培养基或单独的培养基。将通过高效液相色谱法(HPLC)结合紫外光谱法和质谱法评估材料的生物稳定性(通过降解产物的释放测定)。目的:开发新型抗菌树脂,减少修复体表面及树脂-牙本质界面沿着的细菌负荷和侵入。方法:以甲硝唑、克拉维酸和氨苄青霉素为原料,通过共价键合制备抗菌树脂。将使用上述方法评估新型抗微生物剂对基因表达和细菌微渗漏的影响。这种材料设计方法对牙科保健界来说是新颖的,并有可能改变复合树脂材料和粘合剂的配制、测试和应用方式。 公共卫生关系:建立模型系统,以评估牙科材料的唾液和细菌降解过程中发生的生理相关的相互作用,需要开发新的复合树脂配方的设计和应用,并提供准确的安全信息,医疗保健从业者和患者。拟议的研究将建立模型,用于测试不同的策略和材料,以减少粘合界面的降解,目的是合成具有增强细菌入侵抗性的材料,并最终增加修复体的寿命。这种材料设计方法对牙科保健界来说是新颖的,并有可能改变复合树脂材料和粘合剂的配制、测试和应用方式

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Biostable, antidegradative and antimicrobial restorative systems based on host-biomaterials and microbial interactions.
Drug self-assembly for synthesis of highly-loaded antimicrobial drug-silica particles.
药物自组装用于合成高载的抗菌药物硅颗粒。
  • DOI:
    10.1038/s41598-018-19166-8
  • 发表时间:
    2018-01-17
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Stewart CA;Finer Y;Hatton BD
  • 通讯作者:
    Hatton BD
Rapid synthesis of drug-encapsulated films by evaporation-induced self-assembly for highly-controlled drug release from biomaterial surfaces.
通过蒸发诱导的自组装从生物材料表面释放高度控制的药物,快速合成药物包容的膜。
  • DOI:
    10.1039/d1tb02121d
  • 发表时间:
    2022-08-31
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Stewart, C.;Siu, A.;Tsui, C.;Finer, Y.;Hatton, B.
  • 通讯作者:
    Hatton, B.
Esterase from a cariogenic bacterium hydrolyzes dental resins.
  • DOI:
    10.1016/j.actbio.2018.02.020
  • 发表时间:
    2018-04-15
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Huang B;Siqueira WL;Cvitkovitch DG;Finer Y
  • 通讯作者:
    Finer Y
Interfacial Biomaterial-Dentin Bacterial Biofilm Proliferation and Viability Is Affected by the Material, Aging Media and Period.
  • DOI:
    10.3390/dj10030033
  • 发表时间:
    2022-02-24
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Marashdeh MQ;Lévesque C;Friedman S;Stewart CA;Finer Y
  • 通讯作者:
    Finer Y
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dennis G. Cvitkovitch其他文献

Dennis G. Cvitkovitch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dennis G. Cvitkovitch', 18)}}的其他基金

New composite material design based on studies of tooth-composite and microbial i
基于牙齿复合材料和微生物研究的新型复合材料设计
  • 批准号:
    8305409
  • 财政年份:
    2010
  • 资助金额:
    $ 19.46万
  • 项目类别:
New composite material design based on studies of tooth-composite and microbial i
基于牙齿复合材料和微生物研究的新型复合材料设计
  • 批准号:
    8152142
  • 财政年份:
    2010
  • 资助金额:
    $ 19.46万
  • 项目类别:
The competence regulon in Streptococcus mutans biofilms
变形链球菌生物膜的能力调节子
  • 批准号:
    6850705
  • 财政年份:
    1999
  • 资助金额:
    $ 19.46万
  • 项目类别:
The competence regulon in Streptococcus mutans biofilms
变形链球菌生物膜的能力调节子
  • 批准号:
    7995205
  • 财政年份:
    1999
  • 资助金额:
    $ 19.46万
  • 项目类别:
GENETIC COMPETENCE IN STREPTOCOCCUS MUTANS BIOFILMS
变形链球菌生物膜的遗传能力
  • 批准号:
    2843519
  • 财政年份:
    1999
  • 资助金额:
    $ 19.46万
  • 项目类别:
GENETIC COMPETENCE IN STREPTOCCUS MUTANS BIOFILMS
变异链球菌生物膜的遗传能力
  • 批准号:
    6379936
  • 财政年份:
    1999
  • 资助金额:
    $ 19.46万
  • 项目类别:
GENETIC COMPETENCE IN STREPTOCCUS MUTANS BIOFILMS
变异链球菌生物膜的遗传能力
  • 批准号:
    6175903
  • 财政年份:
    1999
  • 资助金额:
    $ 19.46万
  • 项目类别:
The competence regulon in Streptococcus mutans biofilms
变形链球菌生物膜的能力调节子
  • 批准号:
    7340190
  • 财政年份:
    1999
  • 资助金额:
    $ 19.46万
  • 项目类别:
The competence regulon in Streptococcus mutans biofilms
变形链球菌生物膜的能力调节子
  • 批准号:
    7744647
  • 财政年份:
    1999
  • 资助金额:
    $ 19.46万
  • 项目类别:
The competence regulon in Streptococcus mutans biofilms
变形链球菌生物膜的能力调节子
  • 批准号:
    6753685
  • 财政年份:
    1999
  • 资助金额:
    $ 19.46万
  • 项目类别:

相似海外基金

I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
  • 批准号:
    2409620
  • 财政年份:
    2024
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Standard Grant
Architectural design of active adhesives
活性粘合剂的结构设计
  • 批准号:
    2403716
  • 财政年份:
    2024
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Standard Grant
Design of non-swellable adhesives for brain surgery using cyclodextrin inclusion polymer
使用环糊精包合物聚合物脑外科不可溶胀粘合剂的设计
  • 批准号:
    23H01718
  • 财政年份:
    2023
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Meta-material adhesives for improved performance and functionalisation of bondlines
超材料粘合剂可提高粘合层的性能和功能化
  • 批准号:
    EP/W019450/1
  • 财政年份:
    2023
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Fellowship
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
  • 批准号:
    10741660
  • 财政年份:
    2023
  • 资助金额:
    $ 19.46万
  • 项目类别:
Mag-Cure: A novel method for magnetically induced bonding and de-bonding of thermoset adhesives in the Automotive Industry
Mag-Cure:汽车行业中热固性粘合剂磁感应粘合和脱粘的新方法
  • 批准号:
    10062336
  • 财政年份:
    2023
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Collaborative R&D
DMREF: Accelerating the Design of Adhesives with Nanoscale Control of Thermomechanical Properties
DMREF:通过热机械性能的纳米级控制加速粘合剂的设计
  • 批准号:
    2323317
  • 财政年份:
    2023
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Continuing Grant
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
  • 批准号:
    10677869
  • 财政年份:
    2022
  • 资助金额:
    $ 19.46万
  • 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
  • 批准号:
    10746743
  • 财政年份:
    2022
  • 资助金额:
    $ 19.46万
  • 项目类别:
Mechanisms of Blood Clot Adhesion and the Design of New Wet Adhesives
血凝块粘附机制及新型湿粘合剂的设计
  • 批准号:
    RGPIN-2018-04918
  • 财政年份:
    2022
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了