Building Data Science Tools for Genetic Models of Colorectal Cancer Progression and Risk
为结直肠癌进展和风险的遗传模型构建数据科学工具
基本信息
- 批准号:10368281
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:AgeAlgorithmsBig DataBiologicalBiological Specimen BanksBiometryCancer EtiologyCatalogsCessation of lifeClinicalClinical DataColonic AdenomaColonoscopyColorectal CancerColorectal NeoplasmsComputational BiologyComputing MethodologiesDataData ScienceData ScientistData SetDatabasesDevelopmentDiseaseEvaluation of Risk FactorsExcisionExposure toFrequenciesFutureGeneticGenetic MarkersGenetic ModelsGenetic RiskGenomicsGoalsGrantGuidelinesHealthcare SystemsHistopathologyHuman GeneticsIncidenceIndividualJointsLibrariesLongitudinal StudiesLongitudinal cohortMedical RecordsModalityModelingMutationPathologyPhenotypePilot ProjectsPolypsPrecancerous PolypPreventionPreventiveRecording of previous eventsResearchResearch PersonnelResearch SupportResourcesRiskRisk AssessmentRisk FactorsSafetySamplingSomatic MutationSpecimenStatistical MethodsStatistical ModelsTestingTimeTissuesUnited StatesUniversitiesVeteransWorkanalytical toolbiobankcancer riskclinical practiceclinical riskcohortcolon cancer screeningcolorectal cancer preventioncolorectal cancer progressioncolorectal cancer riskcolorectal cancer screeningcomputerized toolscooperative studydata integrationdata qualitydata resourcedata toolsdesignexperiencefollow-upgenetic analysisgenetic informationgenetic risk factorgenomic biomarkergenomic datahigh riskhigh risk populationimprovedmilitary veteranmortalitymortality risknovelpersonalized medicinephenomicspolygenic risk scorepreventprognosticprogramsprogression riskprospectiveresearch studyrisk predictionrisk prediction modelrisk stratificationscreeningtissue resourcetooltv watching
项目摘要
Colorectal cancer (CRC) is the 2nd leading cause of cancer death in the United States. Screening for
CRC with colonoscopy reduces incidence and mortality. The VA Cooperative Studies Program #380
“Prospective Evaluation of Risk Factors for Colonic Adenomas (>1cm) in Asymptomatic Subjects”
was one of the first studies to demonstrate the safety of screening colonoscopy and highlight the
magnitude of benefit through the removal of precancerous polyps for the prevention of CRC.
However, there is considerable variability in individual risk of CRC that could impact age at initiation
of CRC screening, screening modality and frequency of follow-up. Yet, guidelines do not recognize
this variability, performing too much colonoscopy screening and surveillance in low risk individuals
and not providing enough or timely screening and surveillance in high-risk individuals. Genetic and
genomic data offer a promising strategy to improve CRC risk prediction and better target CRC
screening resources. However, what is missing in these genomic risk calculations is recognition of the
timing of certain genetic changes and of those changes in CRC precursors in a clinically meaningful
time course to predict the timing of future CRC. Longitudinal studies of CRC precursors and
progression, identification of genetic risk factors for progression, and incorporation into personalized
risk models can only be accomplished through development of an integrated data resource and
application of new statistical models. We have begun to develop the resources to allow the large-
scale analyses needed to develop comprehensive clinical and genetic risk models. This proposal is
built on our work CSP#380 which incorporates a longitudinal research program of 3121 Veterans who
underwent screening colonoscopy between 1994 and 1997 and have been followed for 20 years. We
have used the CSP#380 research database to apply emerging statistical models for longitudinal
cohorts that incorporate the clinical information from each colonoscopy, allowing estimates of
informative follow-up times while taking the competing risk of mortality over time into account. We
have also extended the biorepository for CSP#380 to include pathology specimens obtained at
colonoscopy to provide a longitudinal tissue resource. The goal of this proposal is to extend the
approach and models developed in CSP#380 to the VA Colonoscopy Cohort (VACC), which includes
all Veterans with exposure to colonoscopy in the VA. We will perform extensive testing in CSP#380
to provide estimates of data quality. This much larger VA data set will allow more thorough discovery
and testing of genetic factors in CRC risk models. This ambitious project will combine development
of a curated phenotype library with histopathology results generated from VA medical records with the
joint longitudinal models applied to CSP#380. We will begin to explore how to incorporate genetic
information into these models through pilot studies in CSP#380 with the future plan of applying these
models to additional VA datasets.
结直肠癌(CRC)是美国癌症死亡的第二大原因。筛查
结肠镜检查可降低CRC的发病率和死亡率。合作研究项目#380
“无症状受试者中结肠腺瘤(> 1 cm)风险因素的前瞻性评价”
是最早证明结肠镜检查安全性的研究之一,并强调了
通过切除癌前息肉预防CRC的益处。
然而,CRC的个体风险存在相当大的差异,这可能影响开始治疗时的年龄。
CRC筛查、筛查方式和随访频率。然而,指导方针不承认
这种可变性,在低风险个体中进行过多的结肠镜筛查和监测,
没有对高危人群提供足够或及时的筛查和监测。遗传和
基因组数据为改善CRC风险预测和更好地靶向CRC提供了一种有前途的策略
筛选资源。然而,在这些基因组风险计算中缺少的是对基因突变的认识。
某些遗传变化的时间和CRC前体中的这些变化在临床上有意义。
时间进程,以预测未来CRC的时间。CRC前体的纵向研究,
疾病进展,识别疾病进展的遗传风险因素,并纳入个性化治疗方案。
风险模型只能通过开发集成数据资源来完成,
应用新的统计模型。我们已经开始开发资源,让大-
规模分析需要制定全面的临床和遗传风险模型。这项建议是
建立在我们的工作CSP#380,其中包括3121退伍军人的纵向研究计划,
在1994年至1997年期间接受了筛查性结肠镜检查,并随访了20年。我们
我使用CSP#380研究数据库应用新兴的纵向统计模型,
纳入每次结肠镜检查的临床信息的队列,允许估计
信息随访时间,同时考虑随着时间的推移死亡率的竞争风险。我们
还扩展了CSP #380的生物储存库,以包括在以下地点获得的病理标本:
结肠镜检查以提供纵向组织资源。该提案的目的是扩大
CSP#380中开发的VA结肠镜检查队列(VACC)方法和模型,包括
所有退伍军人都在退伍军人事务部接受过结肠镜检查我们将在CSP#380中进行广泛的测试
以提供数据质量的估计。这个更大的VA数据集将允许更彻底的发现
和CRC风险模型中遗传因素的测试。这个雄心勃勃的项目将联合收割机的发展
组织病理学结果来自VA医疗记录,
应用于CSP#380的关节纵向模型。我们将开始探索如何将遗传
通过CSP#380中的试点研究,将信息纳入这些模型,并计划在未来应用这些模型。
模型到其他VA数据集。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elizabeth R Hauser其他文献
Elizabeth R Hauser的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elizabeth R Hauser', 18)}}的其他基金
Integrating genomics and metabolomics data to identify molecular characteristics of Gulf War Veterans' illnesses
整合基因组学和代谢组学数据来识别海湾战争退伍军人疾病的分子特征
- 批准号:
10486532 - 财政年份:2023
- 资助金额:
-- - 项目类别:
GENECARD-Gene Identification in Early-Onset CAD
GENECARD-早发 CAD 中的基因识别
- 批准号:
6861104 - 财政年份:2003
- 资助金额:
-- - 项目类别:
GENECARD-Gene Identification in Early-Onset CAD
GENECARD-早发 CAD 中的基因识别
- 批准号:
7053316 - 财政年份:2003
- 资助金额:
-- - 项目类别:
GENECARD-Gene Identification in Early-Onset CAD
GENECARD-早发 CAD 中的基因识别
- 批准号:
7245060 - 财政年份:2003
- 资助金额:
-- - 项目类别:
GENECARD-Gene Identification in Early-Onset CAD
GENECARD-早发 CAD 中的基因识别
- 批准号:
6601396 - 财政年份:2003
- 资助金额:
-- - 项目类别:
GENECARD-Gene Identification in Early-Onset CAD
GENECARD-早发 CAD 中的基因识别
- 批准号:
6728299 - 财政年份:2003
- 资助金额:
-- - 项目类别:
SOFTWARE FOR INTEGRATED LINKAGE AND ASSOCIATION ANALYSIS
用于集成链接和关联分析的软件
- 批准号:
6538906 - 财政年份:2000
- 资助金额:
-- - 项目类别:
相似海外基金
Big Data Analytics: Optimization Models and Algorithms with Applications in Smart Food Supply Chains and Networks
大数据分析:优化模型和算法在智能食品供应链和网络中的应用
- 批准号:
RGPIN-2020-06792 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Large Systems and Big Data: Models, Tools, Analysis, and Algorithms
大型系统和大数据:模型、工具、分析和算法
- 批准号:
RGPIN-2020-04075 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems
用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具
- 批准号:
RGPIN-2017-05785 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Novel Learning-Based Visual Algorithms and Fusion Methods for High-Dimensional/Multi-Modality Big Data
基于学习的新型高维/多模态大数据视觉算法和融合方法
- 批准号:
RGPIN-2022-02948 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
(Re)designing Clustering Algorithms for Big Data
(重新)设计大数据聚类算法
- 批准号:
RGPIN-2017-05617 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
NCS-FO: Connectome mapping algorithms with application to community services for big data neuroscience
NCS-FO:连接组映射算法及其应用于大数据神经科学社区服务
- 批准号:
2203524 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Big Data Analytics: Optimization Models and Algorithms with Applications in Smart Food Supply Chains and Networks
大数据分析:优化模型和算法在智能食品供应链和网络中的应用
- 批准号:
RGPIN-2020-06792 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Exploring Novel Mathematical Models and Efficient Algorithms to Discover Periodic Spatial Patterns in Irregular Spatiotemporal Big Data
探索新颖的数学模型和高效算法以发现不规则时空大数据中的周期性空间模式
- 批准号:
21K12034 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comprehensive study of big data clustering algorithms
大数据聚类算法综合研究
- 批准号:
571110-2018 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
(Re)designing Clustering Algorithms for Big Data
(重新)设计大数据聚类算法
- 批准号:
RGPIN-2017-05617 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual