Antifouling Peptide Mimetic Polymers
防污肽模拟聚合物
基本信息
- 批准号:8578748
- 负责人:
- 金额:$ 34.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAdsorptionAlanineAnimal ModelAntibodiesArchitectureBehaviorBindingBiocompatible MaterialsBiodistributionBiologicalBiological ModelsBiomimeticsBiosensorBloodBreast Cancer CellCardiovascular systemCell CommunicationCell physiologyCellsCharacteristicsChemicalsChemistryComplexContact LensesCoupledDevelopmentDevicesDiagnosticEmerging TechnologiesEngineeringEpithelialExperimental DesignsFutureGlycocalyxGoalsGoldHealth Care CostsHealthcareIn VitroIndwelling CatheterInvestigationLeadLengthLigandsMalignant NeoplasmsMeasurementMedical DeviceMembrane ProteinsMethodsModelingMolecularMolecular WeightMucin-1 Staining MethodMucinsN-substituted GlycinesOutcomes ResearchPatientsPeptidesPeptoidsPerformancePhasePlayPolymersPropertyProteinsResearchResistanceRoleSarcosineSideSolidSurfaceTechnologyTheoretical StudiesTherapeuticTissuesXenograft procedureanti-cancer therapeuticbasebiomaterial compatibilitycancer cellcancer therapydensitydesignimprovedin vivoin vivo Modelinnovationinsightinterfacialmimeticsmolecular dynamicsnanomaterialsnanomedicinenanoparticlenanorodnovelnovel strategiesoverexpressionparticlepeptide analogplasmonicspreventprogramspublic health relevanceresearch studysubcutaneoussuccesstheoriestumor xenograftuptake
项目摘要
DESCRIPTION (provided by applicant): The elimination or minimization of nonspecific biomolecule-material interactions is an integral part of refining the biological performance of existing and future biomaterials, as biofouling of surfaces can lead to compromised device performance, increased cost, and health concerns for the patient. In the emerging field of nanomedicine, for example, biointerfacial interactions play an important role in biodistribution, targeting and overall performance of nanomaterials. The long-term goals of this research are 1) to understand the fundamental biointerfacial phenomena surrounding interactions between engineered surfaces and biomolecules, with a specific emphasis on resistance of grafted polymers to nonspecific protein adsorption; and 2) to use this information to guide the design of novel antifouling peptide mimetic polymers for use in controlling biofouling of medical devices and nanoparticle therapeutics. To accomplish this, we will integrate experimental and theoretical approaches to study the antifouling properties of N-substituted glycine polymers (peptoids), and employ these peptoids as an integral component of a nanoparticle anticancer therapeutic. In the first and second aims, we will combine molecular theory with a versatile synthetic strategy and detailed experimental measurements of protein adsorption to develop novel antifouling peptoids. The focus will be on glycocalyx-mimetic peptoids (glycopeptoids), as well as N-methylglycine peptoid (sarcosine). The performance of these peptoids as surface-grafted polymers will be experimentally evaluated for resistance to nonspecific protein and cell fouling, and integration of
these results with those obtained by molecular theory will allow us to understand the effects of chemical composition and chain architecture on fouling resistance. In Aim 3, these peptoids will be grafted onto gold nanorods (AuNRs), modified with MUC1 antibody and investigated for anticancer efficacy in in-vitro and in-vivo model systems. An innovative aspect of this aim involves the use of theoretical predictions to guide the architectural and compositional design of peptoids to achieve bound surface densities and distributions that enhance the cellular uptake of anti-MUC1 modified AuNRs. In-vitro studies will probe glycopeptoid biocompatibility, cell-targeting efficiency, and photothermal cell ablation using the near-infrared plasmonic properties of the AuNRs. Finally, a xenograft tumor model will be used to demonstrate the efficacy of the anti-MUC1 modified AuNRs as a novel strategy for cancer therapy.
描述(由申请人提供):消除或最小化非特定生物分子与材料的相互作用是完善现有和未来生物材料生物性能的重要组成部分,因为表面的生物污垢可能会导致设备性能受损、成本增加和患者的健康问题。例如,在新兴的纳米医学领域,生物界面相互作用在纳米材料的生物分布、靶向和整体性能方面发挥着重要作用。这项研究的长期目标是1)了解围绕工程表面和生物分子之间相互作用的基本生物界面现象,特别强调接枝聚合物对非特定蛋白质吸附的抗性;以及2)使用这些信息来指导用于控制医疗器械和纳米颗粒疗法的生物污垢的新型防污肽模拟聚合物的设计。为了实现这一目标,我们将结合实验和理论方法来研究N-取代甘氨酸聚合物(类肽)的防污性能,并将这些类肽用作纳米抗癌治疗药物的组成部分。在第一和第二个目标中,我们将把分子理论与一种通用的合成策略和详细的蛋白质吸附实验测量相结合,以开发新型的抗污肽类化合物。重点将放在拟糖萼类肽(类糖肽)以及N-甲基甘氨酸类类肽(肌氨酸)上。这些类肽作为表面接枝聚合物的性能将进行实验评估,以抵抗非特定蛋白质和细胞污染,以及
这些结果与分子理论的结果将使我们了解化学组成和链结构对污垢阻力的影响。在目标3中,这些类肽将被嫁接到金纳米棒(AuNRs)上,用MUC1抗体修饰,并在体外和体内模型系统中研究抗癌效果。这一目标的一个创新方面涉及使用理论预测来指导类肽的结构和组成设计,以获得结合表面密度和分布,从而增强细胞对抗MUC1修饰的AuNRs的摄取。体外研究将利用AuNRs的近红外等离子体特性来探索糖肽的生物相容性、细胞靶向效率和光热细胞消融。最后,一个异种移植瘤模型将被用来展示抗MUC1修饰的AuNRs作为一种新的癌症治疗策略的有效性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Phillip B Messersmith其他文献
Phillip B Messersmith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Phillip B Messersmith', 18)}}的其他基金
2104 Bioinspired Materials Gordon Research Conference & Gordon Research Seminar
2104仿生材料戈登研究会议
- 批准号:
8720292 - 财政年份:2014
- 资助金额:
$ 34.15万 - 项目类别:
2010 Biointerface Science Gordon Research Conference
2010年生物界面科学戈登研究会议
- 批准号:
7989530 - 财政年份:2010
- 资助金额:
$ 34.15万 - 项目类别:
Self-Healing Composites via Novel Biomolecular Design and Processing
通过新颖的生物分子设计和加工实现自修复复合材料
- 批准号:
7933903 - 财政年份:2009
- 资助金额:
$ 34.15万 - 项目类别:
Self-Healing Composites via Novel Biomolecular Design and Processing
通过新颖的生物分子设计和加工实现自修复复合材料
- 批准号:
7835914 - 财政年份:2009
- 资助金额:
$ 34.15万 - 项目类别:
2008 Biointerface Science Gordon Research Conference
2008年生物界面科学戈登研究会议
- 批准号:
7536239 - 财政年份:2008
- 资助金额:
$ 34.15万 - 项目类别:
相似海外基金
Molecular Simulations of Additive Self-Assembly, Rheology, and Surface Adsorption in Complex Fluids
复杂流体中添加剂自组装、流变学和表面吸附的分子模拟
- 批准号:
2901619 - 财政年份:2024
- 资助金额:
$ 34.15万 - 项目类别:
Studentship
An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS)
吸附压缩冷热能存储系统(ACCESS)
- 批准号:
EP/W027593/2 - 财政年份:2024
- 资助金额:
$ 34.15万 - 项目类别:
Research Grant
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
- 批准号:
24K17729 - 财政年份:2024
- 资助金额:
$ 34.15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Thermal stability of adsorption solar power plants
吸附式太阳能发电厂的热稳定性
- 批准号:
2871817 - 财政年份:2024
- 资助金额:
$ 34.15万 - 项目类别:
Studentship
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
- 批准号:
2903366 - 财政年份:2024
- 资助金额:
$ 34.15万 - 项目类别:
Studentship
Metal tolerance and metal adsorption through phycosphere control
通过藻圈控制实现金属耐受性和金属吸附
- 批准号:
23H02303 - 财政年份:2023
- 资助金额:
$ 34.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Integrated experiments and simulations to understand the mechanism and consequences of polymer adsorption in films and nanocomposites
合作研究:综合实验和模拟来了解薄膜和纳米复合材料中聚合物吸附的机制和后果
- 批准号:
2312325 - 财政年份:2023
- 资助金额:
$ 34.15万 - 项目类别:
Standard Grant
Investigation of adsorption of exosomes on porous materials and regulating the behavior to create separation, purification and preservation techniques
研究外泌体在多孔材料上的吸附并调节行为以创建分离、纯化和保存技术
- 批准号:
23KJ0192 - 财政年份:2023
- 资助金额:
$ 34.15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Super-Resolution Imaging of Surface Adsorption on Single Nanoparticles for Electrochemical Dechlorination
用于电化学脱氯的单个纳米颗粒表面吸附的超分辨率成像
- 批准号:
2303933 - 财政年份:2023
- 资助金额:
$ 34.15万 - 项目类别:
Standard Grant
Science for Boundary Lubrication - Essence of Low Friction Mechanism Based on Structure and Dynamics of Additive Adsorption Layer
边界润滑科学——基于添加剂吸附层结构和动力学的低摩擦机制本质
- 批准号:
23H05448 - 财政年份:2023
- 资助金额:
$ 34.15万 - 项目类别:
Grant-in-Aid for Scientific Research (S)














{{item.name}}会员




